Skip to main content
Top

2022 | OriginalPaper | Chapter

3. Reconfiguration of Bose–Einstein Photonic Structure to Produce Clean Energy

Author : Md. Faruque Hossain

Published in: Sustainable Design for Global Equilibrium

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Bose–Einstein photonic structure has been deconstructed and modeled using the MATLAB software to design a Modern Solar Photovoltaics Energy Systems for trapping clean energy. Bose–Einstein photon distribution theory suggests that under low-temperature conditions, photonic bandgap state photons are induced locally and remain steady as long-lived equilibrium particles called discrete energy state photons. Thus, I assume that once a photon is in an extreme relativistic thermal condition, it will not obey Bose–Einstein discrete energy state theory. The photonic bandgap volume will be naturally increased within its vicinity as a result of the extreme relativistic thermal conditions, and the discrete energy state photon will be agitated by extreme relativistic thermal fluctuations. Consequently, the Bose–Einstein photonic dormant state will be broken down within its region and will create a multiple number of photons. Simply, a single discrete energy state photon will be transformed from the crossover phenomenon equilibrium state to a non-equilibrium state to exponentially create multiple photons, here named Hossain nonequilibrium photons (HnP). Calculations reveal that if only 0.00008% of a building’s exterior skin curtain wall is used as a Modern Solar Photovoltaics Energy panel to transform Bose–Einstein equilibrium photons into HnP, it will produce enough clean energy to satisfy the total energy demand of a building.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D.K. Armani, T.J. Kippenberg, S.M. Spillane, K.J. Vahala, Ultra-high-Q toroid microcavity on a chip. Nature 421, 925 (2003)CrossRef D.K. Armani, T.J. Kippenberg, S.M. Spillane, K.J. Vahala, Ultra-high-Q toroid microcavity on a chip. Nature 421, 925 (2003)CrossRef
2.
go back to reference K.M. Birnbaum et al., Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005)CrossRef K.M. Birnbaum et al., Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005)CrossRef
3.
go back to reference K. Busch, G. von Freymann, S. Linden, S.F. Mingaleev, L. Tkeshelashvili, M. Wegener, Periodic nanostructures for photonics. Phys. Rep. 444, 101 (2007)CrossRef K. Busch, G. von Freymann, S. Linden, S.F. Mingaleev, L. Tkeshelashvili, M. Wegener, Periodic nanostructures for photonics. Phys. Rep. 444, 101 (2007)CrossRef
4.
go back to reference D.E. Chang, A.S. Sørensen, E.A. Demler, M.D. Lukin, A single-photon transistor using nanoscale surface plasmons. Nat. Phys. 3, 807–812 (2007)CrossRef D.E. Chang, A.S. Sørensen, E.A. Demler, M.D. Lukin, A single-photon transistor using nanoscale surface plasmons. Nat. Phys. 3, 807–812 (2007)CrossRef
5.
go back to reference J. Chen, C. Wang, R. Zhang, J. Xiao, Multiple plasmon-induced transparencies in coupled-resonator systems. Opt. Lett. 37, 5133–5135 (2012)CrossRef J. Chen, C. Wang, R. Zhang, J. Xiao, Multiple plasmon-induced transparencies in coupled-resonator systems. Opt. Lett. 37, 5133–5135 (2012)CrossRef
6.
go back to reference M.T. Cheng, Y.Y. Song, Fano resonance analysis in a pair of semiconductor quantum dots coupling to a metal nanowire. Opt. Lett. 37, 978–980 (2012)CrossRef M.T. Cheng, Y.Y. Song, Fano resonance analysis in a pair of semiconductor quantum dots coupling to a metal nanowire. Opt. Lett. 37, 978–980 (2012)CrossRef
7.
go back to reference B. Dayan et al., A photon turnstile dynamically regulated by one atom. Science 319, 1062–1065 (2008)CrossRef B. Dayan et al., A photon turnstile dynamically regulated by one atom. Science 319, 1062–1065 (2008)CrossRef
8.
go back to reference D. Englund et al., Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity. Phys. Rev. Lett. 104, 073904 (2010)CrossRef D. Englund et al., Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity. Phys. Rev. Lett. 104, 073904 (2010)CrossRef
9.
go back to reference S. Gleyzes et al., Quantum jumps of light recording the birth and death of a photon in a cavity. Nature 446, 297 (2007)CrossRef S. Gleyzes et al., Quantum jumps of light recording the birth and death of a photon in a cavity. Nature 446, 297 (2007)CrossRef
10.
go back to reference C. Guerlin et al., Progressive field-state collapse and quantum non-demolition photon counting. Nature 448, 889 (2007)CrossRef C. Guerlin et al., Progressive field-state collapse and quantum non-demolition photon counting. Nature 448, 889 (2007)CrossRef
11.
go back to reference Z. Han, S.I. Bozhevolnyi, Plasmon-induced transparency with detuned ultracompact Fabry-Pérot resonators in integrated plasmonic devices. Opt. Express 19, 3251–3257 (2011)CrossRef Z. Han, S.I. Bozhevolnyi, Plasmon-induced transparency with detuned ultracompact Fabry-Pérot resonators in integrated plasmonic devices. Opt. Express 19, 3251–3257 (2011)CrossRef
15.
go back to reference J.F. Huang, T. Shi, C.P. Sun, F. Nori, Controlling single-photon transport in waveguides with finite cross section. Phys. Rev. A 88, 013836 (2013)CrossRef J.F. Huang, T. Shi, C.P. Sun, F. Nori, Controlling single-photon transport in waveguides with finite cross section. Phys. Rev. A 88, 013836 (2013)CrossRef
16.
go back to reference J.D. Joannopoulos, P.R. Villeneuve, S. Fan, Photonic crystals: Putting a new twist on light. Nature 386, 143 (1997)CrossRef J.D. Joannopoulos, P.R. Villeneuve, S. Fan, Photonic crystals: Putting a new twist on light. Nature 386, 143 (1997)CrossRef
17.
go back to reference S. John, J. Wang, Quantum optics of localized light in a photonic band gap. Phys. Rev. B 43, 12772 (1991)CrossRef S. John, J. Wang, Quantum optics of localized light in a photonic band gap. Phys. Rev. B 43, 12772 (1991)CrossRef
18.
go back to reference A.G. Kofman, G. Kurizki, B. Sherman, Spontaneous and induced atomic decay in photonic band structures. J. Mod. Opt. 41, 353 (1994)CrossRef A.G. Kofman, G. Kurizki, B. Sherman, Spontaneous and induced atomic decay in photonic band structures. J. Mod. Opt. 41, 353 (1994)CrossRef
19.
go back to reference P. Kolchin, R.F. Oulton, X. Zhang, Nonlinear quantum optics in a waveguide: Distinct single photons strongly interacting at the single atom level. Phys. Rev. Lett. 106, 113601 (2011)CrossRef P. Kolchin, R.F. Oulton, X. Zhang, Nonlinear quantum optics in a waveguide: Distinct single photons strongly interacting at the single atom level. Phys. Rev. Lett. 106, 113601 (2011)CrossRef
20.
go back to reference C. Lang et al., Observation of resonant photon blockade at microwave frequencies using correlation function measurements. Phys. Rev. Lett. 106, 243601 (2011)CrossRef C. Lang et al., Observation of resonant photon blockade at microwave frequencies using correlation function measurements. Phys. Rev. Lett. 106, 243601 (2011)CrossRef
21.
go back to reference C.U. Lei, W.M. Zhang, A quantum photonic dissipative transport theory. Ann. Phys. 327, 1408 (2012)MATHCrossRef C.U. Lei, W.M. Zhang, A quantum photonic dissipative transport theory. Ann. Phys. 327, 1408 (2012)MATHCrossRef
22.
go back to reference Q. Li, D.Z. Xu, C.Y. Cai, C.P. Sun, Recoil effects of a motional scatterer on single-photon scattering in one dimension. Sci. Rep. 3, 3144 (2013)CrossRef Q. Li, D.Z. Xu, C.Y. Cai, C.P. Sun, Recoil effects of a motional scatterer on single-photon scattering in one dimension. Sci. Rep. 3, 3144 (2013)CrossRef
23.
go back to reference J.Q. Liao, C.K. Law, Correlated two-photon transport in a one-dimensional waveguide side-coupled to a nonlinear cavity. Phys. Rev. A 82, 053836 (2010)CrossRef J.Q. Liao, C.K. Law, Correlated two-photon transport in a one-dimensional waveguide side-coupled to a nonlinear cavity. Phys. Rev. A 82, 053836 (2010)CrossRef
24.
go back to reference J.Q. Liao, C.K. Law, Correlated two-photon scattering in cavity optomechanics. Phys. Rev. A 87, 043809 (2013)CrossRef J.Q. Liao, C.K. Law, Correlated two-photon scattering in cavity optomechanics. Phys. Rev. A 87, 043809 (2013)CrossRef
25.
go back to reference P.-Y. Lo, H.-N. Xiong, W.-M. Zhang, Breakdown of Bose-Einstein distribution in photonic crystals. Sci. Rep. 5, 9423 (2015)CrossRef P.-Y. Lo, H.-N. Xiong, W.-M. Zhang, Breakdown of Bose-Einstein distribution in photonic crystals. Sci. Rep. 5, 9423 (2015)CrossRef
26.
go back to reference P. Longo, P. Schmitteckert, K. Busch, Few-photon transport in low-dimensional systems. Phys. Rev. A 83, 063828 (2011)CrossRef P. Longo, P. Schmitteckert, K. Busch, Few-photon transport in low-dimensional systems. Phys. Rev. A 83, 063828 (2011)CrossRef
27.
go back to reference X.-Y. Lü, W.-M. Zhang, S. Ashhab, Y. Wu, F. Nori, Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems. Sci. Rep. 3, 2943 (2013)CrossRef X.-Y. Lü, W.-M. Zhang, S. Ashhab, Y. Wu, F. Nori, Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems. Sci. Rep. 3, 2943 (2013)CrossRef
28.
go back to reference G.D. Mahan, Many-Body Physics, 3rd edn. (Kluwer Academic/Plenum Publishers, New York, 2000) G.D. Mahan, Many-Body Physics, 3rd edn. (Kluwer Academic/Plenum Publishers, New York, 2000)
30.
go back to reference S. Noda, T. Baba, Roadmap on Photonic Crystals (Kluwer Academic Publishers Groups, Dordrecht, 2003)CrossRef S. Noda, T. Baba, Roadmap on Photonic Crystals (Kluwer Academic Publishers Groups, Dordrecht, 2003)CrossRef
31.
go back to reference D. O’Shea, C. Junge, J. Volz, A. Rauschenbeutel, Fiber-optical switch controlled by a single atom. Phys. Rev. Lett. 111, 193601 (2013)CrossRef D. O’Shea, C. Junge, J. Volz, A. Rauschenbeutel, Fiber-optical switch controlled by a single atom. Phys. Rev. Lett. 111, 193601 (2013)CrossRef
32.
go back to reference A. Reinhard, Strongly correlated photons on a chip. Nat. Photonics 6, 93–96 (2012)CrossRef A. Reinhard, Strongly correlated photons on a chip. Nat. Photonics 6, 93–96 (2012)CrossRef
33.
go back to reference D. Roy, Two-photon scattering of a tightly focused weak light beam from a small atomic ensemble: An optical probe to detect atomic level structures. Phys. Rev. A 87, 063819 (2013)CrossRef D. Roy, Two-photon scattering of a tightly focused weak light beam from a small atomic ensemble: An optical probe to detect atomic level structures. Phys. Rev. A 87, 063819 (2013)CrossRef
34.
go back to reference E. Saloux, Explicit model of photovoltaic panels to determine voltages and currents at the maximum power point. Sol. Energy 85, 713–722 (2011)CrossRef E. Saloux, Explicit model of photovoltaic panels to determine voltages and currents at the maximum power point. Sol. Energy 85, 713–722 (2011)CrossRef
35.
go back to reference C. Sayrin et al., Real-time quantum feedback prepares and stabilizes photon number states. Nature 477, 73 (2011)CrossRef C. Sayrin et al., Real-time quantum feedback prepares and stabilizes photon number states. Nature 477, 73 (2011)CrossRef
36.
go back to reference J.T. Shen, S. Fan, Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system. Phys. Rev. Lett. 98, 153003 (2007)CrossRef J.T. Shen, S. Fan, Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system. Phys. Rev. Lett. 98, 153003 (2007)CrossRef
37.
go back to reference T. Shi, S. Fan, C.P. Sun, Two-photon transport in a waveguide coupled to a cavity in a two-level system. Phys. Rev. A 84, 063803 (2011)CrossRef T. Shi, S. Fan, C.P. Sun, Two-photon transport in a waveguide coupled to a cavity in a two-level system. Phys. Rev. A 84, 063803 (2011)CrossRef
38.
go back to reference S. Sreekumar, A. Benny, Maximum power point tracking of photovoltaic system using Fuzzy Logic Controller based boost converter, in 2013 International Conference on Current Trends in Engineering and Technology (ICCTET), 2013 S. Sreekumar, A. Benny, Maximum power point tracking of photovoltaic system using Fuzzy Logic Controller based boost converter, in 2013 International Conference on Current Trends in Engineering and Technology (ICCTET), 2013
39.
go back to reference M.S. Tame, K.R. McEnery, Ş.K. Özdemir, J. Lee, S.A. Maier, M.S. Kim, Quantum plasmonics. Nat. Phys. 9, 329–340 (2013)CrossRef M.S. Tame, K.R. McEnery, Ş.K. Özdemir, J. Lee, S.A. Maier, M.S. Kim, Quantum plasmonics. Nat. Phys. 9, 329–340 (2013)CrossRef
40.
go back to reference M.W.Y. Tu, W.M. Zhang, Non-Markovian decoherence theory for a double-dot charge qubit. Phys. Rev. B 78, 235311 (2008)CrossRef M.W.Y. Tu, W.M. Zhang, Non-Markovian decoherence theory for a double-dot charge qubit. Phys. Rev. B 78, 235311 (2008)CrossRef
41.
go back to reference M.W.-Y. Tu, W.-M. Zhang, J. Jin, O. Entin-Wohlman, A. Aharony, Transient quantum transport in double-dot Aharonov-Bohm interferometers. Phys. Rev. B 86, 115453 (2012)CrossRef M.W.-Y. Tu, W.-M. Zhang, J. Jin, O. Entin-Wohlman, A. Aharony, Transient quantum transport in double-dot Aharonov-Bohm interferometers. Phys. Rev. B 86, 115453 (2012)CrossRef
42.
go back to reference X.H. Wang, B.Y. Gu, R. Wang, H.Q. Xu, Decay kinetic properties of atoms in photonic crystals with absolute gaps. Phys. Rev. Lett. 91, 113904 (2003)CrossRef X.H. Wang, B.Y. Gu, R. Wang, H.Q. Xu, Decay kinetic properties of atoms in photonic crystals with absolute gaps. Phys. Rev. Lett. 91, 113904 (2003)CrossRef
43.
go back to reference Y.F. Xiao et al., Asymmetric Fano resonance analysis in indirectly coupled microresonators. Phys. Rev. A 82, 065804 (2010)CrossRef Y.F. Xiao et al., Asymmetric Fano resonance analysis in indirectly coupled microresonators. Phys. Rev. A 82, 065804 (2010)CrossRef
44.
go back to reference W.-B. Yan, H. Fan, Single-photon quantum router with multiple output ports. Sci. Rep. 4, 4820 (2014)CrossRef W.-B. Yan, H. Fan, Single-photon quantum router with multiple output ports. Sci. Rep. 4, 4820 (2014)CrossRef
45.
go back to reference W.-B. Yan, J.-F. Huang, H. Fan, Tunable single-photon frequency conversion in a Sagnac interferometer. Sci. Rep. 3, 3555 (2013)CrossRef W.-B. Yan, J.-F. Huang, H. Fan, Tunable single-photon frequency conversion in a Sagnac interferometer. Sci. Rep. 3, 3555 (2013)CrossRef
46.
go back to reference Z. Yu, X. Hu, H. Yang, Q. Gong, On-chip plasmon-induced transparency based on plasmonic coupled nanos cavities. Sci. Rep. 4, 3752 (2014) Z. Yu, X. Hu, H. Yang, Q. Gong, On-chip plasmon-induced transparency based on plasmonic coupled nanos cavities. Sci. Rep. 4, 3752 (2014)
47.
go back to reference W.M. Zhang, P.Y. Lo, H.N. Xiong, M.W.Y. Tu, F. Nori, General non-Markovian dynamics of open quantum systems. Phys. Rev. Lett. 109, 170402 (2012)CrossRef W.M. Zhang, P.Y. Lo, H.N. Xiong, M.W.Y. Tu, F. Nori, General non-Markovian dynamics of open quantum systems. Phys. Rev. Lett. 109, 170402 (2012)CrossRef
Metadata
Title
Reconfiguration of Bose–Einstein Photonic Structure to Produce Clean Energy
Author
Md. Faruque Hossain
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-94818-4_3