Skip to main content
Top

2020 | OriginalPaper | Chapter

Recycling of the Flue Gas from Aluminium Electrolysis Cells

Authors : Asbjørn Solheim, Samuel Senanu

Published in: Light Metals 2020

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recycling of the flue gas from aluminium reduction cells is a possible method for increasing the CO2 concentration, thereby enabling CO2 capture. The present paper represents a preliminary study concerning some of the consequences in the electrolysis cells. The energy balance in a hypothetic 400 kA cell was estimated, and it turned out that the heat flow into the superstructure could be kept constant by decreasing the thickness of the anode cover material even with a very hot gas. Recycling gives a higher amount of collectible heat from the cells, mainly because of higher temperature in the gas entering the cell. It will be advantageous to apply catalytic burning of CO to CO2, which represents considerable extra heat. Increased sulfuric acid dewpoint may represent a challenge. It is also necessary to address the amount of hydrogen fluoride that re-evolves from the secondary alumina at high superstructure temperature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G. Wedde: A Method of Ventilating an Aluminium Production Electrolytic Cell, European Patent EP 2 360 296 A1 (2011), US Patent US 9 458 545 B2 (2016), US Patent US 9 771 660 B2 (2017). G. Wedde: A Method of Ventilating an Aluminium Production Electrolytic Cell, European Patent EP 2 360 296 A1 (2011), US Patent US 9 458 545 B2 (2016), US Patent US 9 771 660 B2 (2017).
2.
go back to reference G. Wedde, O.E. Bjarnø, and A.K. Sørhuus: Recycled Pot Gas Distribution, US Patent US 9 234 286 B2 (2016). G. Wedde, O.E. Bjarnø, and A.K. Sørhuus: Recycled Pot Gas Distribution, US Patent US 9 234 286 B2 (2016).
3.
go back to reference Y. Ladam, A. Solheim, M. Segatz, and O.-A. Lorentsen: Heat Recovery from Aluminium Reduction Cells, Light Metals 2011, 393–398. Y. Ladam, A. Solheim, M. Segatz, and O.-A. Lorentsen: Heat Recovery from Aluminium Reduction Cells, Light Metals 2011, 393–398.
4.
go back to reference A. Arkhipov, I. Necheporenko, A. Mukhanov, N. Ahli, and K AlMarzooqi: Modelling Study of Exhaust Rate Impact on Heat Loss from Aluminium Reduction Cells, Light Metals 2019, 625–635. A. Arkhipov, I. Necheporenko, A. Mukhanov, N. Ahli, and K AlMarzooqi: Modelling Study of Exhaust Rate Impact on Heat Loss from Aluminium Reduction Cells, Light Metals 2019, 625–635.
7.
go back to reference A. Solheim: Current Efficiency in Aluminium Reduction Cells: Theories, Models, Concepts, and Speculations, Light Metals 2014, 753–758. A. Solheim: Current Efficiency in Aluminium Reduction Cells: Theories, Models, Concepts, and Speculations, Light Metals 2014, 753–758.
8.
go back to reference T.G. Pearson and J. Waddington: Electrode Reactions in the Aluminium Reduction Cell, Discuss. Farad. Soc. 1 307–320 (1947). T.G. Pearson and J. Waddington: Electrode Reactions in the Aluminium Reduction Cell, Discuss. Farad. Soc. 1 307–320 (1947).
9.
go back to reference W. Haupin and H. Kvande: Mathematical Model of Fluoride Evolution from Hall-Héroult Cells, Light Metals 1993, 257–263. W. Haupin and H. Kvande: Mathematical Model of Fluoride Evolution from Hall-Héroult Cells, Light Metals 1993, 257–263.
10.
go back to reference A. Solheim and Å. Sterten: Activity of Alumina in the System NaF-AlF3-Al2O3 at NaF/AlF3 Molar Ratios Ranging from 1.4 to 3, Light Metals 1999, 445–452. A. Solheim and Å. Sterten: Activity of Alumina in the System NaF-AlF3-Al2O3 at NaF/AlF3 Molar Ratios Ranging from 1.4 to 3, Light Metals 1999, 445–452.
11.
go back to reference A. Solheim, S. Rolseth, E. Skybakmoen, L. Støen, Å. Sterten, and T. Støre: Liquidus Temperatures for Primary Crystallization of Cryolite in Molten Salt Systems of Interest for the Aluminium Electrolysis, Met. Trans. B 27B 739–744 (1996). A. Solheim, S. Rolseth, E. Skybakmoen, L. Støen, Å. Sterten, and T. Støre: Liquidus Temperatures for Primary Crystallization of Cryolite in Molten Salt Systems of Interest for the Aluminium Electrolysis, Met. Trans. B 27B 739–744 (1996).
12.
go back to reference J. Thonstad, P. Fellner, G.M. Haarberg, J. Hives, H. Kvande, and Å. Sterten: Aluminium Electrolysis, 3rd Edition, Aluminium-Verlag, 2001. J. Thonstad, P. Fellner, G.M. Haarberg, J. Hives, H. Kvande, and Å. Sterten: Aluminium Electrolysis, 3rd Edition, Aluminium-Verlag, 2001.
13.
go back to reference I.A. Zlochower: Experimental Flammability Limits and Associated Theoretical Flame Temperatures as a Tool for Predicting the Temperature Dependence of these Limits, J. Loss Prev. Process Ind. 25(3) 555–560 (2012). I.A. Zlochower: Experimental Flammability Limits and Associated Theoretical Flame Temperatures as a Tool for Predicting the Temperature Dependence of these Limits, J. Loss Prev. Process Ind. 25(3) 555–560 (2012).
14.
go back to reference F.H. Verhoff and J.T. Banchero: Predicting Dew Points of Flue Gases, Chem. Eng. Prog., 70(8) 71–72 (1974). F.H. Verhoff and J.T. Banchero: Predicting Dew Points of Flue Gases, Chem. Eng. Prog., 70(8) 71–72 (1974).
15.
go back to reference A.G. Okkes and B.V. Badger: Get Acid Dew Points of Flue Gas, Hydrocarbon Proc., 66(7) 53–55 (1987). A.G. Okkes and B.V. Badger: Get Acid Dew Points of Flue Gas, Hydrocarbon Proc., 66(7) 53–55 (1987).
16.
go back to reference R.R. Pierce: Estimating Acid Dewpoints in Stack Gases, Chemical Engineering, 84(8) 125–128 (1977). R.R. Pierce: Estimating Acid Dewpoints in Stack Gases, Chemical Engineering, 84(8) 125–128 (1977).
17.
go back to reference O.-A. Lorentsen, A. Dyrøy, and M. Karlsen: Handling CO2eq from an Aluminum Electrolysis Cell, Light Metals 2009, 263–268. O.-A. Lorentsen, A. Dyrøy, and M. Karlsen: Handling CO2eq from an Aluminum Electrolysis Cell, Light Metals 2009, 263–268.
18.
go back to reference Thor A. Aarhaug: SINTEF, personal communication (2015). Thor A. Aarhaug: SINTEF, personal communication (2015).
Metadata
Title
Recycling of the Flue Gas from Aluminium Electrolysis Cells
Authors
Asbjørn Solheim
Samuel Senanu
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-36408-3_107

Premium Partners