Skip to main content
Top

2022 | OriginalPaper | Chapter

Recycling of Tungsten by Molten Salt Process

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Tungsten (W) is one of the most important metals in various industries, particularly in the machining industry. At least 60% of W is consumed in cemented carbide or super-hard alloys in Japan and the USA. The major recycling method for cemented carbides is the hydrometallurgical process combined with the roasting step, which oxidizes W in scrap into tungsten oxide. However, this conventional process requires repetition of roasting and dissolution in some cases, which makes the process costly and inefficient. In contrast, the molten salt process has specific advantages in terms of processing rate and simplicity. In this study, the recycling processes for W using molten salt are reviewed. Subsequently, our new recycling process using molten hydroxide is introduced, and recent data on this process discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference US Geological Survey (2016) Mineral commodity summaries US Geological Survey (2016) Mineral commodity summaries
2.
go back to reference JOGMEC (2019) Material flow of mineral resources 2018, Tungsten JOGMEC (2019) Material flow of mineral resources 2018, Tungsten
3.
go back to reference Oishi T (2017) Tungsten recycling technologies using Molten salts. Kinzoku 87:771–776 (in Japanese) Oishi T (2017) Tungsten recycling technologies using Molten salts. Kinzoku 87:771–776 (in Japanese)
4.
go back to reference Lassner E (1995) From tungsten concentrates and scrap to highly pure ammonium paratungstate (APT). Int J Refract Met Hard Mater 13:35–44CrossRef Lassner E (1995) From tungsten concentrates and scrap to highly pure ammonium paratungstate (APT). Int J Refract Met Hard Mater 13:35–44CrossRef
5.
go back to reference Lassner E, Schubert WD (1999) Tungsten-properties, chemistry, technology of the element, alloys, and chemical compounds. Plenum Publishers, New York, pp 377–385CrossRef Lassner E, Schubert WD (1999) Tungsten-properties, chemistry, technology of the element, alloys, and chemical compounds. Plenum Publishers, New York, pp 377–385CrossRef
6.
go back to reference Shedd KB (2005) Tungsten recycling in the United States in 2000. US Geological Survey Shedd KB (2005) Tungsten recycling in the United States in 2000. US Geological Survey
7.
go back to reference Iguchi T, Ikegaya A (2008) Recycling of tungsten. In: Harada K, Nakamura T (eds) Technology of alternatives and recycling of rare metals. CMC Publishing Co, Ltd., Tokyo (in Japanese) Iguchi T, Ikegaya A (2008) Recycling of tungsten. In: Harada K, Nakamura T (eds) Technology of alternatives and recycling of rare metals. CMC Publishing Co, Ltd., Tokyo (in Japanese)
8.
go back to reference Nose K, Okabe TH (2011) Recycling technology of tungsten. Kinzoku 81:908–915 (in Japanese) Nose K, Okabe TH (2011) Recycling technology of tungsten. Kinzoku 81:908–915 (in Japanese)
9.
go back to reference Itoh H (2013) Recent trend of rare metal recycling. J MMIJ 129:97–106 (in Japanese)CrossRef Itoh H (2013) Recent trend of rare metal recycling. J MMIJ 129:97–106 (in Japanese)CrossRef
10.
go back to reference Bhosale SN, Mookherjee S, Pardeshi RM (1990) Current practices in tungsten extraction and recovery. High Temp Mater Processes 9:147–162CrossRef Bhosale SN, Mookherjee S, Pardeshi RM (1990) Current practices in tungsten extraction and recovery. High Temp Mater Processes 9:147–162CrossRef
11.
go back to reference Ishida T, Itakura T, Moriguchi H, Ikegaya A (2012) Recycling technique for cemented carbide tools and development of tungsten-saving tools. SEI Tech Rev 181:33–39 Ishida T, Itakura T, Moriguchi H, Ikegaya A (2012) Recycling technique for cemented carbide tools and development of tungsten-saving tools. SEI Tech Rev 181:33–39
12.
go back to reference Li KC, Wang CY (1955) Tungsten. Reinhold Publishing Corporation, New York, pp 175–176 Li KC, Wang CY (1955) Tungsten. Reinhold Publishing Corporation, New York, pp 175–176
13.
14.
go back to reference Douglass AD, Reilly KT, Landmesser JE (1986) US4603043 Douglass AD, Reilly KT, Landmesser JE (1986) US4603043
15.
go back to reference Morishita M, Yamamoto H, Ikebe M, Yanagida H, Ueno T (2014) PCT. International patent, WO2014/045579 Morishita M, Yamamoto H, Ikebe M, Yanagida H, Ueno T (2014) PCT. International patent, WO2014/045579
16.
go back to reference Yamamoto Y, Sasaya K, Fudo T, Nakano A, Yamanaka S, Iguchi T, Sato F, Ikegaya A (2010) PCT. International patent, WO2010/104009 Yamamoto Y, Sasaya K, Fudo T, Nakano A, Yamanaka S, Iguchi T, Sato F, Ikegaya A (2010) PCT. International patent, WO2010/104009
17.
go back to reference Hayashi T, Sato F, Sasaya K, Ikegaya A (2016) Industrialization of tungsten recovering from used cemented carbide tools. SEI Tech Rev 189:8–14 Hayashi T, Sato F, Sasaya K, Ikegaya A (2016) Industrialization of tungsten recovering from used cemented carbide tools. SEI Tech Rev 189:8–14
18.
go back to reference Scott FH (1955) United Kingdom patent GB791925 Scott FH (1955) United Kingdom patent GB791925
19.
go back to reference Yasuda K, Nozaki F, Uehata R, Hagiwara R (2020) Oxidative dissolution of tungsten metal in Na2CO3 under Ar–O2–CO2 atmosphere. J Electrochem Soc 167:131501 Yasuda K, Nozaki F, Uehata R, Hagiwara R (2020) Oxidative dissolution of tungsten metal in Na2CO3 under Ar–O2–CO2 atmosphere. J Electrochem Soc 167:131501
20.
go back to reference Lohse M (1996) PCT. International patent, WO96/041768 Lohse M (1996) PCT. International patent, WO96/041768
21.
go back to reference Itakura T, Ikegaya A, Yamamoto Y (2016) Japanese patent JP6018958 Itakura T, Ikegaya A, Yamamoto Y (2016) Japanese patent JP6018958
22.
go back to reference Oishi T, Yaguchi M, Tanaka M (2013) Anodic dissolution of tungsten in a molten sodium hydroxide. J MMIJ 129:707–712CrossRef Oishi T, Yaguchi M, Tanaka M (2013) Anodic dissolution of tungsten in a molten sodium hydroxide. J MMIJ 129:707–712CrossRef
23.
go back to reference Oishi T, Yaguchi M (2017) Influence of partial pressure of water vapor on anodic dissolution of tungsten from super hard alloy tools in molten sodium hydroxide. Int J Refract Met Hard Mater 69:254–258CrossRef Oishi T, Yaguchi M (2017) Influence of partial pressure of water vapor on anodic dissolution of tungsten from super hard alloy tools in molten sodium hydroxide. Int J Refract Met Hard Mater 69:254–258CrossRef
24.
go back to reference Oishi T, Yaguchi M (2018) Solubility of sodium tungstate in molten sodium hydroxide. Electrochemistry 86:61–65CrossRef Oishi T, Yaguchi M (2018) Solubility of sodium tungstate in molten sodium hydroxide. Electrochemistry 86:61–65CrossRef
Metadata
Title
Recycling of Tungsten by Molten Salt Process
Author
Tetsuo Oishi
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-92563-5_7