Skip to main content
Top

2021 | OriginalPaper | Chapter

Recycling the Plastic Wastes to Carbon Nanotubes

Authors : Atika Alhanish, Gomaa A. M. Ali

Published in: Waste Recycling Technologies for Nanomaterials Manufacturing

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter introduces the reader to utilizing plastic wastes as a precursor for the fabrication of carbon nanotubes and the efforts done for this purpose. In addition, it provides a brief introduction to the topic, and an overview of the fundamental concepts of carbon nanotubes, including structure, types, and growth mechanism, is given. The conventional methods of fabricating carbon nanotubes are discussed. Moreover, it describes the methods used to convert plastic waste to carbon nanotubes in detail, while also highlighting the factors affecting each process’s efficiency and the recent progress in this regard.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tessnow-von Wysocki I, Le Billon P (2019) Plastics at sea: treaty design for a global solution to marine plastic pollution. Environ Sci Policy 100:94–104CrossRef Tessnow-von Wysocki I, Le Billon P (2019) Plastics at sea: treaty design for a global solution to marine plastic pollution. Environ Sci Policy 100:94–104CrossRef
2.
go back to reference Singh N, Hui D, Singh R, Ahuja IPS, Feo L, Fraternali F (2017) Recycling of plastic solid waste: a state of art review and future applications. Compos B Eng 115:409–422CrossRef Singh N, Hui D, Singh R, Ahuja IPS, Feo L, Fraternali F (2017) Recycling of plastic solid waste: a state of art review and future applications. Compos B Eng 115:409–422CrossRef
3.
go back to reference Pol VG, Thiyagarajan P (2010) Remediating plastic waste into carbon nanotubes. J. Environ Monit 12(2):455–459CrossRef Pol VG, Thiyagarajan P (2010) Remediating plastic waste into carbon nanotubes. J. Environ Monit 12(2):455–459CrossRef
4.
go back to reference Okolie JA, Nanda S, Dalai AK, Berruti F, Kozinski JA (2020) A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas. Renew Sustain Energy Rev 119:109546CrossRef Okolie JA, Nanda S, Dalai AK, Berruti F, Kozinski JA (2020) A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas. Renew Sustain Energy Rev 119:109546CrossRef
5.
go back to reference Williams PT (2006) Yield and composition of gases and oils/waxes from the feedstock recycling of waste plastic. In: Feedstock recycling and pyrolysis of waste plastics. John Wiley & Sons, Ltd., pp 285–313 Williams PT (2006) Yield and composition of gases and oils/waxes from the feedstock recycling of waste plastic. In: Feedstock recycling and pyrolysis of waste plastics. John Wiley & Sons, Ltd., pp 285–313
6.
go back to reference Bazargan A, McKay G (2012) A review—synthesis of carbon nanotubes from plastic wastes. Chem Eng J 195–196:377–391CrossRef Bazargan A, McKay G (2012) A review—synthesis of carbon nanotubes from plastic wastes. Chem Eng J 195–196:377–391CrossRef
7.
go back to reference Czepirski L, Szczurowski J, Ba, ys M, aw, Makomaski G, Zieli, ski J, Ciesi, ska W, awa (2016) Novel carbonaceous nanomaterials from waste polymers. Curr Nanomaterials 1(2):103–109 Czepirski L, Szczurowski J, Ba, ys M, aw, Makomaski G, Zieli, ski J, Ciesi, ska W, awa (2016) Novel carbonaceous nanomaterials from waste polymers. Curr Nanomaterials 1(2):103–109
8.
go back to reference Mukherjee A, Debnath B, Ghosh SK (2018) Carbon nanotubes as a resourceful product derived from waste plastic—a review. In: Waste management and resource efficiency. Springer, Singapore, pp 915–934 Mukherjee A, Debnath B, Ghosh SK (2018) Carbon nanotubes as a resourceful product derived from waste plastic—a review. In: Waste management and resource efficiency. Springer, Singapore, pp 915–934
9.
go back to reference Kukovitskii EF, Chernozatonskii LA, L’Vov SG, Mel’nik NN (1997) Carbon nanotubes of polyethylene. Chem Phys Lett 266(3–4):323–328CrossRef Kukovitskii EF, Chernozatonskii LA, L’Vov SG, Mel’nik NN (1997) Carbon nanotubes of polyethylene. Chem Phys Lett 266(3–4):323–328CrossRef
10.
go back to reference Kiselev NA, Sloan J, Zakharov DN, Kukovitskii EF, Hutchison JL, Hammer J, Kotosonov AS (1998) Carbon nanotubes from polyethylene precursors: structure and structural changes caused by thermal and chemical treatment revealed by HREM. Carbon 36(7–8):1149–1157CrossRef Kiselev NA, Sloan J, Zakharov DN, Kukovitskii EF, Hutchison JL, Hammer J, Kotosonov AS (1998) Carbon nanotubes from polyethylene precursors: structure and structural changes caused by thermal and chemical treatment revealed by HREM. Carbon 36(7–8):1149–1157CrossRef
11.
go back to reference Purohit R, Purohit K, Rana S, Rana RS, Patel V (2014) Carbon nanotubes and their growth methods. Proc Mater Sci 6:716–728CrossRef Purohit R, Purohit K, Rana S, Rana RS, Patel V (2014) Carbon nanotubes and their growth methods. Proc Mater Sci 6:716–728CrossRef
12.
go back to reference Baughman RH (2002) Carbon nanotubes–the route toward applications. Science 297(5582):787–792CrossRef Baughman RH (2002) Carbon nanotubes–the route toward applications. Science 297(5582):787–792CrossRef
13.
go back to reference Zhuo C, Levendis YA (2013) Upcycling waste plastics into carbon nanomaterials: a review. J Appl Polym Sci 131(4):39931 Zhuo C, Levendis YA (2013) Upcycling waste plastics into carbon nanomaterials: a review. J Appl Polym Sci 131(4):39931
14.
go back to reference Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R (2011) Methods for carbon nanotubes synthesis—review. J Mater Chem 21(40):15872CrossRef Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R (2011) Methods for carbon nanotubes synthesis—review. J Mater Chem 21(40):15872CrossRef
15.
go back to reference Ren Z, Lan Y, Wang Y (2012) Aligned carbon nanotubes: physics, concepts, fabrication and devices. Springer Science & Business Media, pp. 1–299 Ren Z, Lan Y, Wang Y (2012) Aligned carbon nanotubes: physics, concepts, fabrication and devices. Springer Science & Business Media, pp. 1–299
16.
go back to reference Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58CrossRef
17.
go back to reference Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–605CrossRef Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–605CrossRef
18.
go back to reference Sadegh H, Ali GAM, Abbasi Z, Nadagoud MN (2017) Adsorption of ammonium ions onto multi-walled carbon nanotubes. Stud Univ Babes-Bolyai Chem 62(2):233–245 Sadegh H, Ali GAM, Abbasi Z, Nadagoud MN (2017) Adsorption of ammonium ions onto multi-walled carbon nanotubes. Stud Univ Babes-Bolyai Chem 62(2):233–245
19.
go back to reference Seyed Arabi SM, Lalehloo RS, Olyai MRTB, Ali GAM, Sadegh H (2019) Removal of congo red azo dye from aqueous solution by ZnO nanoparticles loaded on multiwall carbon nanotubes. Physica E 106:150–155CrossRef Seyed Arabi SM, Lalehloo RS, Olyai MRTB, Ali GAM, Sadegh H (2019) Removal of congo red azo dye from aqueous solution by ZnO nanoparticles loaded on multiwall carbon nanotubes. Physica E 106:150–155CrossRef
20.
go back to reference Ali GAM, Sadegh H, Yusoff MM, Chong KF (2019) Highly stable symmetric supercapacitor from cysteamine functionalized multi-walled carbon nanotubes operating in a wide potential window. Mater Today Proc 16:2273–2279CrossRef Ali GAM, Sadegh H, Yusoff MM, Chong KF (2019) Highly stable symmetric supercapacitor from cysteamine functionalized multi-walled carbon nanotubes operating in a wide potential window. Mater Today Proc 16:2273–2279CrossRef
21.
go back to reference Nessim GD (2010) Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition. Nanoscale 2(8):1306CrossRef Nessim GD (2010) Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition. Nanoscale 2(8):1306CrossRef
22.
go back to reference Ali GAM, Lih Teo EY, Aboelazm EAA, Sadegh H, Memar AOH, Shahryari-Ghoshekandi R, Chong KF (2017) Capacitive performance of cysteamine functionalized carbon nanotubes. Mater Chem Phys 197:100–104CrossRef Ali GAM, Lih Teo EY, Aboelazm EAA, Sadegh H, Memar AOH, Shahryari-Ghoshekandi R, Chong KF (2017) Capacitive performance of cysteamine functionalized carbon nanotubes. Mater Chem Phys 197:100–104CrossRef
23.
go back to reference Maazinejad B, Mohammadnia O, Ali GAM, Makhlouf ASH, Nadagouda MN, Sillanpää M, Asiri AM, Agarwal S, Gupta VK, Sadegh H (2020) Taguchi L9 (34) orthogonal array study based on methylene blue removal by single-walled carbon nanotubes-amine: adsorption optimization using the experimental design method, kinetics, equilibrium and thermodynamics. J Mol Liq 298:112001CrossRef Maazinejad B, Mohammadnia O, Ali GAM, Makhlouf ASH, Nadagouda MN, Sillanpää M, Asiri AM, Agarwal S, Gupta VK, Sadegh H (2020) Taguchi L9 (34) orthogonal array study based on methylene blue removal by single-walled carbon nanotubes-amine: adsorption optimization using the experimental design method, kinetics, equilibrium and thermodynamics. J Mol Liq 298:112001CrossRef
24.
go back to reference Kumar M (2011) Carbon nanotube synthesis and growth mechanism. In: Yellampalli, S (eds.) Carbon nanotubes—synthesis, characterization, applications. IntechOpen, pp. 127–193 Kumar M (2011) Carbon nanotube synthesis and growth mechanism. In: Yellampalli, S (eds.) Carbon nanotubes—synthesis, characterization, applications. IntechOpen, pp. 127–193
25.
go back to reference Saleh MH, Koller M (2019) Introductory chapter: carbon nanotubes. In: Saleh HE, El-Sheikh SMM (eds.) Perspective of carbon nanotubes. IntechOpen, pp. 3–9 Saleh MH, Koller M (2019) Introductory chapter: carbon nanotubes. In: Saleh HE, El-Sheikh SMM (eds.) Perspective of carbon nanotubes. IntechOpen, pp. 3–9
26.
go back to reference Sadegh H, Ali GAM, Makhlouf ASH, Chong KF, Alharbi NS, Agarwal S, Gupta VK (2018) MWCNTs-Fe3O4 nanocomposite for Hg(II) high adsorption efficiency. J Mol Liq 258:345–353CrossRef Sadegh H, Ali GAM, Makhlouf ASH, Chong KF, Alharbi NS, Agarwal S, Gupta VK (2018) MWCNTs-Fe3O4 nanocomposite for Hg(II) high adsorption efficiency. J Mol Liq 258:345–353CrossRef
27.
go back to reference Sharifi A, Montazerghaem L, Naeimi A, Abhari AR, Vafaee M, Ali GAM, Sadegh H (2019) Investigation of photocatalytic behavior of modified ZnS:Mn/MWCNTs nanocomposite for organic pollutants effective photodegradation. J Environ Manage 247:624–632CrossRef Sharifi A, Montazerghaem L, Naeimi A, Abhari AR, Vafaee M, Ali GAM, Sadegh H (2019) Investigation of photocatalytic behavior of modified ZnS:Mn/MWCNTs nanocomposite for organic pollutants effective photodegradation. J Environ Manage 247:624–632CrossRef
28.
go back to reference Sadegh H, Ali GAM, Agarwal S, Gupta VK (2019) Surface modification of MWCNTs with carboxylic-to-amine and their superb adsorption performance. Int J Environ Res 13(3):523–531CrossRef Sadegh H, Ali GAM, Agarwal S, Gupta VK (2019) Surface modification of MWCNTs with carboxylic-to-amine and their superb adsorption performance. Int J Environ Res 13(3):523–531CrossRef
29.
go back to reference Saifuddin N, Raziah AZ, Junizah AR (2013) Carbon nanotubes: a review on structure and their interaction with proteins. J Chem 2013:1–18CrossRef Saifuddin N, Raziah AZ, Junizah AR (2013) Carbon nanotubes: a review on structure and their interaction with proteins. J Chem 2013:1–18CrossRef
30.
go back to reference Lu J, Miao J (2012) Growth mechanism of carbon nanotubes: a nano Czochralski model. Nanoscale Res Lett 7(1):356 Lu J, Miao J (2012) Growth mechanism of carbon nanotubes: a nano Czochralski model. Nanoscale Res Lett 7(1):356
31.
go back to reference Pirard SL, Douven S, Pirard J-P (2017) Large-scale industrial manufacturing of carbon nanotubes in a continuous inclined mobile-bed rotating reactor via the catalytic chemical vapor deposition process. Front Chem Sci Eng 11(2):280–289CrossRef Pirard SL, Douven S, Pirard J-P (2017) Large-scale industrial manufacturing of carbon nanotubes in a continuous inclined mobile-bed rotating reactor via the catalytic chemical vapor deposition process. Front Chem Sci Eng 11(2):280–289CrossRef
32.
go back to reference Brinson BE, Gangoli VS, Kumar A, Hauge RH, Adams WW, Barron AR (2019) From newspaper substrate to nanotubes—analysis of carbonized soot grown on Kaolin sized newsprint. C. J Carbon Res 5(4):66 Brinson BE, Gangoli VS, Kumar A, Hauge RH, Adams WW, Barron AR (2019) From newspaper substrate to nanotubes—analysis of carbonized soot grown on Kaolin sized newsprint. C. J Carbon Res 5(4):66
33.
go back to reference Venkataraman A, Amadi EV, Chen Y, Papadopoulos C (2019) Carbon nanotube assembly and integration for applications. Nanoscale Res Lett 14(1):220 Venkataraman A, Amadi EV, Chen Y, Papadopoulos C (2019) Carbon nanotube assembly and integration for applications. Nanoscale Res Lett 14(1):220
34.
go back to reference Mirabootalebi SO, Akbari GH (2017) Methods for synthesis of carbon nanotubes—review. Int J Bio-Inorg Hybr Nanomater 6(2):49–57 Mirabootalebi SO, Akbari GH (2017) Methods for synthesis of carbon nanotubes—review. Int J Bio-Inorg Hybr Nanomater 6(2):49–57
35.
go back to reference Zhuo C, Hall B, Richter H, Levendis Y (2010) Synthesis of carbon nanotubes by sequential pyrolysis and combustion of polyethylene. Carbon 48(14):4024–4034CrossRef Zhuo C, Hall B, Richter H, Levendis Y (2010) Synthesis of carbon nanotubes by sequential pyrolysis and combustion of polyethylene. Carbon 48(14):4024–4034CrossRef
36.
go back to reference Chen S, Liu Z, Jiang S, Hou H (2020) Carbonization: a feasible route for reutilization of plastic wastes. Sci Total Environ 710:136250CrossRef Chen S, Liu Z, Jiang S, Hou H (2020) Carbonization: a feasible route for reutilization of plastic wastes. Sci Total Environ 710:136250CrossRef
37.
go back to reference Ahamed A, Veksha A, Yin K, Weerachanchai P, Giannis A, Lisak G (2020) Environmental impact assessment of converting flexible packaging plastic waste to pyrolysis oil and multi-walled carbon nanotubes. J Hazard Mater 390:121449CrossRef Ahamed A, Veksha A, Yin K, Weerachanchai P, Giannis A, Lisak G (2020) Environmental impact assessment of converting flexible packaging plastic waste to pyrolysis oil and multi-walled carbon nanotubes. J Hazard Mater 390:121449CrossRef
38.
go back to reference Sharma SS, Batra VS (2019) Production of hydrogen and carbon nanotubes via catalytic thermo-chemical conversion of plastic waste: review. J Chem Technol Biotechnol 95(1):11–19CrossRef Sharma SS, Batra VS (2019) Production of hydrogen and carbon nanotubes via catalytic thermo-chemical conversion of plastic waste: review. J Chem Technol Biotechnol 95(1):11–19CrossRef
39.
go back to reference Zahid MU, Pervaiz E, Hussain A, Shahzad MI, Niazi MBK (2018) Synthesis of carbon nanomaterials from different pyrolysis techniques: a review. Mater Res Express 5(5):052002CrossRef Zahid MU, Pervaiz E, Hussain A, Shahzad MI, Niazi MBK (2018) Synthesis of carbon nanomaterials from different pyrolysis techniques: a review. Mater Res Express 5(5):052002CrossRef
40.
go back to reference Gong J, Liu J, Wan D, Chen X, Wen X, Mijowska E, Jiang Z, Wang Y, Tang T (2012) Catalytic carbonization of polypropylene by the combined catalysis of activated carbon with Ni2O3 into carbon nanotubes and its mechanism. Appl Catal A 449:112–120CrossRef Gong J, Liu J, Wan D, Chen X, Wen X, Mijowska E, Jiang Z, Wang Y, Tang T (2012) Catalytic carbonization of polypropylene by the combined catalysis of activated carbon with Ni2O3 into carbon nanotubes and its mechanism. Appl Catal A 449:112–120CrossRef
41.
go back to reference Gong J, Chen X, Tang T (2019) Recent progress in controlled carbonization of (waste) polymers. Prog Polym Sci 94:1–32CrossRef Gong J, Chen X, Tang T (2019) Recent progress in controlled carbonization of (waste) polymers. Prog Polym Sci 94:1–32CrossRef
42.
go back to reference Mishra N, Das G, Ansaldo A, Genovese A, Malerba M, Povia M, Ricci D, Di Fabrizio E, Di Zitti E, Sharon M, Sharon M (2012) Pyrolysis of waste polypropylene for the synthesis of carbon nanotubes. J Anal Appl Pyrol 94:91–98CrossRef Mishra N, Das G, Ansaldo A, Genovese A, Malerba M, Povia M, Ricci D, Di Fabrizio E, Di Zitti E, Sharon M, Sharon M (2012) Pyrolysis of waste polypropylene for the synthesis of carbon nanotubes. J Anal Appl Pyrol 94:91–98CrossRef
43.
go back to reference Tang T, Chen X, Meng X, Chen H, Ding Y (2005) Synthesis of multiwalled carbon nanotubes by catalytic combustion of polypropylene. Angew Chem Int Ed 44(10):1517–1520CrossRef Tang T, Chen X, Meng X, Chen H, Ding Y (2005) Synthesis of multiwalled carbon nanotubes by catalytic combustion of polypropylene. Angew Chem Int Ed 44(10):1517–1520CrossRef
44.
go back to reference Kong Q, Zhang J (2007) Synthesis of straight and helical carbon nanotubes from catalytic pyrolysis of polyethylene. Polym Degrad Stab 92(11):2005–2010CrossRef Kong Q, Zhang J (2007) Synthesis of straight and helical carbon nanotubes from catalytic pyrolysis of polyethylene. Polym Degrad Stab 92(11):2005–2010CrossRef
45.
go back to reference Zheng Y, Zhang H, Ge S, Song J, Wang J, Zhang S (2018) Synthesis of carbon nanotube arrays with high aspect ratio via ni-catalyzed pyrolysis of waste polyethylene. Nanomaterials 8(7):556CrossRef Zheng Y, Zhang H, Ge S, Song J, Wang J, Zhang S (2018) Synthesis of carbon nanotube arrays with high aspect ratio via ni-catalyzed pyrolysis of waste polyethylene. Nanomaterials 8(7):556CrossRef
46.
go back to reference Arena U, Mastellone ML, Camino G, Boccaleri E (2006) An innovative process for mass production of multi-wall carbon nanotubes by means of low-cost pyrolysis of polyolefins. Polym Degrad Stab 91(4):763–768CrossRef Arena U, Mastellone ML, Camino G, Boccaleri E (2006) An innovative process for mass production of multi-wall carbon nanotubes by means of low-cost pyrolysis of polyolefins. Polym Degrad Stab 91(4):763–768CrossRef
47.
go back to reference Aboul-Enein AA, Awadallah AE (2019) Impact of Co/Mo ratio on the activity of CoMo/MgO catalyst for production of high-quality multi-walled carbon nanotubes from polyethylene waste. Mater Chem Phys 238:121879CrossRef Aboul-Enein AA, Awadallah AE (2019) Impact of Co/Mo ratio on the activity of CoMo/MgO catalyst for production of high-quality multi-walled carbon nanotubes from polyethylene waste. Mater Chem Phys 238:121879CrossRef
48.
go back to reference Joseph Berkmans A, Jagannatham M, Priyanka S, Haridoss P (2014) Synthesis of branched, nano channeled, ultrafine and nano carbon tubes from PET wastes using the arc discharge method. Waste Manage 34(11):2139–2145CrossRef Joseph Berkmans A, Jagannatham M, Priyanka S, Haridoss P (2014) Synthesis of branched, nano channeled, ultrafine and nano carbon tubes from PET wastes using the arc discharge method. Waste Manage 34(11):2139–2145CrossRef
49.
go back to reference El Essawy NA, Konsowa AH, Elnouby M, Farag HA (2016) A novel one-step synthesis for carbon-based nanomaterials from polyethylene terephthalate (PET) bottles waste. J Air Waste Manag Assoc 67(3):358–370CrossRef El Essawy NA, Konsowa AH, Elnouby M, Farag HA (2016) A novel one-step synthesis for carbon-based nanomaterials from polyethylene terephthalate (PET) bottles waste. J Air Waste Manag Assoc 67(3):358–370CrossRef
50.
go back to reference Nath DCD, Sahajwalla V (2011) Application of fly ash as a catalyst for synthesis of carbon nanotube ribbons. J Hazard Mater 192(2):691–697CrossRef Nath DCD, Sahajwalla V (2011) Application of fly ash as a catalyst for synthesis of carbon nanotube ribbons. J Hazard Mater 192(2):691–697CrossRef
51.
go back to reference Nath DCD, Sahajwalla V (2012) Analysis of carbon nanotubes produced by pyrolysis of composite film of poly (vinyl alcohol) and modified fly ash. Mater Sci Appl 03(02):103–109 Nath DCD, Sahajwalla V (2012) Analysis of carbon nanotubes produced by pyrolysis of composite film of poly (vinyl alcohol) and modified fly ash. Mater Sci Appl 03(02):103–109
52.
go back to reference Zhang Y, Wu C, Nahil MA, Williams P (2015) Pyrolysis-catalytic reforming/gasification of waste tires for production of carbon nanotubes and hydrogen. Energy Fuels 29(5):3328–3334CrossRef Zhang Y, Wu C, Nahil MA, Williams P (2015) Pyrolysis-catalytic reforming/gasification of waste tires for production of carbon nanotubes and hydrogen. Energy Fuels 29(5):3328–3334CrossRef
53.
go back to reference Alves JO, Soares Tenório JA, Zhuo C, Levendis YA (2012) Use of Stainless Steel AISI 304 for catalytic synthesis of carbon nanomaterials from solid wastes. J Mater Res Technol 1(3):128–133CrossRef Alves JO, Soares Tenório JA, Zhuo C, Levendis YA (2012) Use of Stainless Steel AISI 304 for catalytic synthesis of carbon nanomaterials from solid wastes. J Mater Res Technol 1(3):128–133CrossRef
54.
go back to reference Kwon S-J, Seo H-K, Ahn S, Lee T-W (2018) Value-added recycling of inexpensive carbon sources to graphene and carbon nanotubes. Adv Sustain Syst 3(1):1800016CrossRef Kwon S-J, Seo H-K, Ahn S, Lee T-W (2018) Value-added recycling of inexpensive carbon sources to graphene and carbon nanotubes. Adv Sustain Syst 3(1):1800016CrossRef
55.
go back to reference Mastellone ML, Perugini F, Ponte M, Arena U (2002) Fluidized bed pyrolysis of a recycled polyethylene. Polym Degrad Stab 76(3):479–487CrossRef Mastellone ML, Perugini F, Ponte M, Arena U (2002) Fluidized bed pyrolysis of a recycled polyethylene. Polym Degrad Stab 76(3):479–487CrossRef
56.
go back to reference Yang W, Sun WJ, Chu W, Jiang CF, Wen J (2012) Synthesis of carbon nanotubes using scrap tyre rubber as carbon source. Chin Chem Lett 23(3):363–366CrossRef Yang W, Sun WJ, Chu W, Jiang CF, Wen J (2012) Synthesis of carbon nanotubes using scrap tyre rubber as carbon source. Chin Chem Lett 23(3):363–366CrossRef
57.
go back to reference Acomb JC, Wu C, Williams PT (2016) The use of different metal catalysts for the simultaneous production of carbon nanotubes and hydrogen from pyrolysis of plastic feedstocks. Appl Catal B 180:497–510CrossRef Acomb JC, Wu C, Williams PT (2016) The use of different metal catalysts for the simultaneous production of carbon nanotubes and hydrogen from pyrolysis of plastic feedstocks. Appl Catal B 180:497–510CrossRef
58.
go back to reference Arnaiz N, Martin-Gullon I, Font R, Gomez-Rico MF (2018) Production of bamboo-type carbon nanotubes doped with nitrogen from polyamide pyrolysis gas. J Anal Appl Pyrol 130:52–61CrossRef Arnaiz N, Martin-Gullon I, Font R, Gomez-Rico MF (2018) Production of bamboo-type carbon nanotubes doped with nitrogen from polyamide pyrolysis gas. J Anal Appl Pyrol 130:52–61CrossRef
59.
go back to reference Borsodi N, Szentes A, Miskolczi N, Wu C, Liu X (2016) Carbon nanotubes synthetized from gaseous products of waste polymer pyrolysis and their application. J Anal Appl Pyrol 120:304–313CrossRef Borsodi N, Szentes A, Miskolczi N, Wu C, Liu X (2016) Carbon nanotubes synthetized from gaseous products of waste polymer pyrolysis and their application. J Anal Appl Pyrol 120:304–313CrossRef
60.
go back to reference Zhuo C, Hall B, Levendis Y, Richter H (2011) A novel technology for Green(er) Manufacturing of CNTs via recycling of waste plastics. In: MRS Proceedings 1317 Zhuo C, Hall B, Levendis Y, Richter H (2011) A novel technology for Green(er) Manufacturing of CNTs via recycling of waste plastics. In: MRS Proceedings 1317
61.
go back to reference Zhuo C, Alves JO, Tenorio JAS, Levendis YA (2012) Synthesis of carbon nanomaterials through up-cycling agricultural and municipal solid wastes. Ind Eng Chem Res 51(7):2922–2930CrossRef Zhuo C, Alves JO, Tenorio JAS, Levendis YA (2012) Synthesis of carbon nanomaterials through up-cycling agricultural and municipal solid wastes. Ind Eng Chem Res 51(7):2922–2930CrossRef
62.
go back to reference Acomb JC, Wu C, Williams PT (2014) Control of steam input to the pyrolysis-gasification of waste plastics for improved production of hydrogen or carbon nanotubes. Appl Catal B 147:571–584CrossRef Acomb JC, Wu C, Williams PT (2014) Control of steam input to the pyrolysis-gasification of waste plastics for improved production of hydrogen or carbon nanotubes. Appl Catal B 147:571–584CrossRef
63.
go back to reference Wu C, Nahil MA, Miskolczi N, Huang J, Williams PT (2016) Production and application of carbon nanotubes, as a co-product of hydrogen from the pyrolysis-catalytic reforming of waste plastic. Process Saf Environ Prot 103:107–114CrossRef Wu C, Nahil MA, Miskolczi N, Huang J, Williams PT (2016) Production and application of carbon nanotubes, as a co-product of hydrogen from the pyrolysis-catalytic reforming of waste plastic. Process Saf Environ Prot 103:107–114CrossRef
64.
go back to reference Nahil MA, Wu C, Williams PT (2015) Influence of metal addition to Ni-based catalysts for the co-production of carbon nanotubes and hydrogen from the thermal processing of waste polypropylene. Fuel Process Technol 130:46–53CrossRef Nahil MA, Wu C, Williams PT (2015) Influence of metal addition to Ni-based catalysts for the co-production of carbon nanotubes and hydrogen from the thermal processing of waste polypropylene. Fuel Process Technol 130:46–53CrossRef
65.
go back to reference Zhang Y, Williams PT (2016) Carbon nanotubes and hydrogen production from the pyrolysis catalysis or catalytic-steam reforming of waste tyres. J Anal Appl Pyrol 122:490–501CrossRef Zhang Y, Williams PT (2016) Carbon nanotubes and hydrogen production from the pyrolysis catalysis or catalytic-steam reforming of waste tyres. J Anal Appl Pyrol 122:490–501CrossRef
66.
go back to reference Lopez G, Artetxe M, Amutio M, Alvarez J, Bilbao J, Olazar M (2018) Recent advances in the gasification of waste plastics. A critical overview. Renew Sustain Energy Rev 82:576–596CrossRef Lopez G, Artetxe M, Amutio M, Alvarez J, Bilbao J, Olazar M (2018) Recent advances in the gasification of waste plastics. A critical overview. Renew Sustain Energy Rev 82:576–596CrossRef
67.
go back to reference Liu X, Shen B, Yuan P, Patel D, Wu C (2017) Production of carbon nanotubes (CNTs) from thermochemical conversion of waste plastics using Ni/anodic aluminum oxide (AAO) template catalyst. Energy Proc 142:525–530CrossRef Liu X, Shen B, Yuan P, Patel D, Wu C (2017) Production of carbon nanotubes (CNTs) from thermochemical conversion of waste plastics using Ni/anodic aluminum oxide (AAO) template catalyst. Energy Proc 142:525–530CrossRef
68.
go back to reference Veksha A, Yin K, Moo JGS, Oh W-D, Ahamed A, Chen WQ, Weerachanchai P, Giannis A, Lisak G (2020) Processing of flexible plastic packaging waste into pyrolysis oil and multi-walled carbon nanotubes for electrocatalytic oxygen reduction. J Hazard Mater 387:121256CrossRef Veksha A, Yin K, Moo JGS, Oh W-D, Ahamed A, Chen WQ, Weerachanchai P, Giannis A, Lisak G (2020) Processing of flexible plastic packaging waste into pyrolysis oil and multi-walled carbon nanotubes for electrocatalytic oxygen reduction. J Hazard Mater 387:121256CrossRef
69.
go back to reference Zhang Y, Wu C, Nahil MA, Williams P (2016) High-value resource recovery products from waste tyres. Proc Inst Civil Eng Waste Resource Manage 169(3):137–145 Zhang Y, Wu C, Nahil MA, Williams P (2016) High-value resource recovery products from waste tyres. Proc Inst Civil Eng Waste Resource Manage 169(3):137–145
70.
go back to reference Gou X, Zhao D, Wu C (2020) Catalytic conversion of hard plastics to valuable carbon nanotubes. J Anal Appl Pyrol 145:104748CrossRef Gou X, Zhao D, Wu C (2020) Catalytic conversion of hard plastics to valuable carbon nanotubes. J Anal Appl Pyrol 145:104748CrossRef
71.
go back to reference Zhang Y, Nahil MA, Wu C, Williams PT (2017) Pyrolysis–catalysis of waste plastic using a nickel–stainless-steel mesh catalyst for high-value carbon products. Environ Technol 38(22):2889–2897CrossRef Zhang Y, Nahil MA, Wu C, Williams PT (2017) Pyrolysis–catalysis of waste plastic using a nickel–stainless-steel mesh catalyst for high-value carbon products. Environ Technol 38(22):2889–2897CrossRef
72.
go back to reference Panahi A, Wei Z, Song G, Levendis YA (2019) Influence of Stainless-Steel catalyst substrate type and pretreatment on growing carbon nanotubes from waste postconsumer plastics. Ind Eng Chem Res 58(8):3009–3023CrossRef Panahi A, Wei Z, Song G, Levendis YA (2019) Influence of Stainless-Steel catalyst substrate type and pretreatment on growing carbon nanotubes from waste postconsumer plastics. Ind Eng Chem Res 58(8):3009–3023CrossRef
73.
go back to reference Tripathi P, Durbach S, Coville N (2017) Synthesis of multi-walled carbon nanotubes from plastic waste using a stainless-Steel CVD reactor as catalyst. Nanomaterials 7(10):284 Tripathi P, Durbach S, Coville N (2017) Synthesis of multi-walled carbon nanotubes from plastic waste using a stainless-Steel CVD reactor as catalyst. Nanomaterials 7(10):284
74.
go back to reference Adrados A, de Marco I, Caballero BM, López A, Laresgoiti MF, Torres A (2012) Pyrolysis of plastic packaging waste: a comparison of plastic residuals from material recovery facilities with simulated plastic waste. Waste Manage 32(5):826–832CrossRef Adrados A, de Marco I, Caballero BM, López A, Laresgoiti MF, Torres A (2012) Pyrolysis of plastic packaging waste: a comparison of plastic residuals from material recovery facilities with simulated plastic waste. Waste Manage 32(5):826–832CrossRef
75.
go back to reference Acomb JC, Wu C, Williams PT (2015) Effect of growth temperature and feedstock: catalyst ratio on the production of carbon nanotubes and hydrogen from the pyrolysis of waste plastics. J Anal Appl Pyrol 113:231–238CrossRef Acomb JC, Wu C, Williams PT (2015) Effect of growth temperature and feedstock: catalyst ratio on the production of carbon nanotubes and hydrogen from the pyrolysis of waste plastics. J Anal Appl Pyrol 113:231–238CrossRef
76.
go back to reference Zhang B, Song C, Liu C, Min J, Azadmanjiri J, Ni Y, Niu R, Gong J, Zhao Q, Tang T (2019) Molten salts promoting the “controlled carbonization” of waste polyesters into hierarchically porous carbon for high-performance solar steam evaporation. J Mater Chem A 7(40):22912–22923CrossRef Zhang B, Song C, Liu C, Min J, Azadmanjiri J, Ni Y, Niu R, Gong J, Zhao Q, Tang T (2019) Molten salts promoting the “controlled carbonization” of waste polyesters into hierarchically porous carbon for high-performance solar steam evaporation. J Mater Chem A 7(40):22912–22923CrossRef
77.
go back to reference Moo JGS, Veksha A, Oh W-D, Giannis A, Udayanga WDC, Lin S-X, Ge L, Lisak G (2019) Plastic derived carbon nanotubes for electrocatalytic oxygen reduction reaction: effects of plastic feedstock and synthesis temperature. Electrochem Commun 101:11–18CrossRef Moo JGS, Veksha A, Oh W-D, Giannis A, Udayanga WDC, Lin S-X, Ge L, Lisak G (2019) Plastic derived carbon nanotubes for electrocatalytic oxygen reduction reaction: effects of plastic feedstock and synthesis temperature. Electrochem Commun 101:11–18CrossRef
Metadata
Title
Recycling the Plastic Wastes to Carbon Nanotubes
Authors
Atika Alhanish
Gomaa A. M. Ali
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-68031-2_24

Premium Partners