Skip to main content
Top
Published in: Journal of Materials Science 17/2019

28-05-2019 | Polymers & biopolymers

Redispersibility of cellulose nanoparticles modified by phenyltrimethoxysilane and its application in stabilizing Pickering emulsions

Authors: Xinfang Zhang, Ziqiang Shao, Yi Zhou, Jie Wei, Weidong He, Shuo Wang, Xiaofu Dai, Jiaying Ren

Published in: Journal of Materials Science | Issue 17/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Because of irreversible agglomeration in the dehydrating process, the wet storage and transport of cellulose nanofibres (CNF) are the serious issues that need to be resolved in the commercialization and application of CNF. In this study, silanized cellulose nanofibres (Si-CNF) were prepared by modifying CNF with phenyltrimethoxysilane (PTS). Moreover, a mixture of redispersed Si-CNF and mineral oil was treated by combining ultrasound and high-pressure homogenizer to prepare Pickering emulsions. Different ratios of CNF/PTS were prepared and redispersed, and their morphological characteristics, thermal performance, rheological properties, zeta potential, and size distribution were analysed to evaluate the changes occurring during modification. The results show that the obtained Si-CNF demonstrates excellent redispersibility in water. The viscosity of the redispersed product exhibits the best suspension stability with the particle distribution uniform at the nanoscale when the addition amount of PTS is 0.18 mmol/g. Rheological and dynamic light scattering results have shown that the Pickering emulsion maintains the best dispersion stability at a concentration of 0.02% and remains stable after 7 days of storage. PTS modified the hydrophobicity of the CNF and provided alternative routes for application of CNF and Pickering emulsions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Abidi N, Hequet E, Cabrales L (2008) Evaluating cell wall structure and composition of developing cotton fibers using Fourier transform infrared spectroscopy and thermogravimetric analysis. J Appl Polym Sci 107:476–486CrossRef Abidi N, Hequet E, Cabrales L (2008) Evaluating cell wall structure and composition of developing cotton fibers using Fourier transform infrared spectroscopy and thermogravimetric analysis. J Appl Polym Sci 107:476–486CrossRef
2.
go back to reference Amin MCIM, Abadi AG, Katas H (2014) Purification, characterization and comparative studies of spray-dried bacterial cellulose microparticles. Carbohydr Polym 99:180–189CrossRef Amin MCIM, Abadi AG, Katas H (2014) Purification, characterization and comparative studies of spray-dried bacterial cellulose microparticles. Carbohydr Polym 99:180–189CrossRef
3.
go back to reference Carpenter AW, De Lannoy CF, Wiesner MR (2015) Cellulose nanomaterials in water treatment technologies. Environ Sci Technol 49:5277–5287CrossRef Carpenter AW, De Lannoy CF, Wiesner MR (2015) Cellulose nanomaterials in water treatment technologies. Environ Sci Technol 49:5277–5287CrossRef
4.
go back to reference Velasquez-Cock J, Gomez H, Posada P (2017) Poly(vinyl alcohol) as a capping agent in oven dried cellulose nanofibrils. Carbohydr Polym 179:118–125CrossRef Velasquez-Cock J, Gomez H, Posada P (2017) Poly(vinyl alcohol) as a capping agent in oven dried cellulose nanofibrils. Carbohydr Polym 179:118–125CrossRef
5.
go back to reference Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromol 10:425–432CrossRef Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromol 10:425–432CrossRef
6.
go back to reference Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRef Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRef
7.
go back to reference Klemm D, Kramer F, Moritz S (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRef Klemm D, Kramer F, Moritz S (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRef
8.
go back to reference Paäkkö M, Ankerfors M, Kosonen H (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8:1934–1941CrossRef Paäkkö M, Ankerfors M, Kosonen H (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8:1934–1941CrossRef
9.
go back to reference Abitbol T, Rivkin A, Cao YF (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol 39:76–88CrossRef Abitbol T, Rivkin A, Cao YF (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol 39:76–88CrossRef
10.
go back to reference Eyholzer C, Bordeanu N, Lopez-Suevos F (2010) Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17:19–30CrossRef Eyholzer C, Bordeanu N, Lopez-Suevos F (2010) Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17:19–30CrossRef
11.
go back to reference Missoum K, Bras J, Belgacem MN (2012) Water redispersible dried nanofibrillated cellulose by adding sodium chloride. Biomacromol 13:4118–4125CrossRef Missoum K, Bras J, Belgacem MN (2012) Water redispersible dried nanofibrillated cellulose by adding sodium chloride. Biomacromol 13:4118–4125CrossRef
12.
go back to reference Robles E, Urruzola I, Labidi J (2015) Surface-modified nano-cellulose as reinforcement in poly(lactic acid) to conform new composites. Ind Crop Prod 71:44–53CrossRef Robles E, Urruzola I, Labidi J (2015) Surface-modified nano-cellulose as reinforcement in poly(lactic acid) to conform new composites. Ind Crop Prod 71:44–53CrossRef
13.
go back to reference Oksman K, Aitomäki Y, Mathew AP (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part A Appl Sci Manuf 83:2–18CrossRef Oksman K, Aitomäki Y, Mathew AP (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part A Appl Sci Manuf 83:2–18CrossRef
14.
go back to reference Butchosa N, Zhou Q (2014) Water redispersible cellulose nanofibrils adsorbed with carboxymethyl cellulose. Cellulose 21:4349–4358CrossRef Butchosa N, Zhou Q (2014) Water redispersible cellulose nanofibrils adsorbed with carboxymethyl cellulose. Cellulose 21:4349–4358CrossRef
15.
go back to reference Hu Z, Ballinger S, Pelton R, Cranston ED (2015) Surfactant-enhanced cellulose nanocrystal Pickering emulsions. J Colloid Interface Sci 439:139–148CrossRef Hu Z, Ballinger S, Pelton R, Cranston ED (2015) Surfactant-enhanced cellulose nanocrystal Pickering emulsions. J Colloid Interface Sci 439:139–148CrossRef
16.
go back to reference Jia C, Chen LH, Shao ZQ (2017) Using a fully recyclable dicarboxylic acid for producing dispersible and thermally stable cellulose nanomaterials from different cellulosic sources. Cellulose 24:2483–2498CrossRef Jia C, Chen LH, Shao ZQ (2017) Using a fully recyclable dicarboxylic acid for producing dispersible and thermally stable cellulose nanomaterials from different cellulosic sources. Cellulose 24:2483–2498CrossRef
17.
go back to reference Frone AN, Berlioz S, Chailan JF (2013) Morphology and thermal properties of PLA—cellulose nanofibers composites. Carbohydr Polym 91:377–384CrossRef Frone AN, Berlioz S, Chailan JF (2013) Morphology and thermal properties of PLA—cellulose nanofibers composites. Carbohydr Polym 91:377–384CrossRef
18.
go back to reference Beaumont M, Bacher M, Opietnik M (2018) A general aqueous silanization protocol to introduce vinyl, mercapto or azido functionalities onto cellulose fibers and nanocelluloses. Molecules 6:1427CrossRef Beaumont M, Bacher M, Opietnik M (2018) A general aqueous silanization protocol to introduce vinyl, mercapto or azido functionalities onto cellulose fibers and nanocelluloses. Molecules 6:1427CrossRef
19.
go back to reference Hettegger H, Beaumont M, Potthast A (2016) Aqueous modification of nano- and microfibrillar cellulose with a click synthon. Chem Sus Chem 9:75–79CrossRef Hettegger H, Beaumont M, Potthast A (2016) Aqueous modification of nano- and microfibrillar cellulose with a click synthon. Chem Sus Chem 9:75–79CrossRef
20.
go back to reference Xu SH, Gu J, Luo YF (2012) Effects of partial replacement of silica with surface modified nanocrystalline cellulose on properties of natural rubber nanocomposites. Express Polym Lett 6:14–25CrossRef Xu SH, Gu J, Luo YF (2012) Effects of partial replacement of silica with surface modified nanocrystalline cellulose on properties of natural rubber nanocomposites. Express Polym Lett 6:14–25CrossRef
21.
go back to reference Fujisaki Y, Koga H, Nakajima Y (2014) Transparent nanopaper-based flexible organic thin-film transistor array. Adv Funct Mater 12:1657–1663CrossRef Fujisaki Y, Koga H, Nakajima Y (2014) Transparent nanopaper-based flexible organic thin-film transistor array. Adv Funct Mater 12:1657–1663CrossRef
22.
go back to reference Huang P, Zhao Y, Kuga S (2016) A versatile method for producing functionalized cellulose nanofibers and their application. Nanoscale 8:3753–3759CrossRef Huang P, Zhao Y, Kuga S (2016) A versatile method for producing functionalized cellulose nanofibers and their application. Nanoscale 8:3753–3759CrossRef
23.
go back to reference Pickering SU, Spencer U (1907) CXCVI.—emulsions. J Chem Soc T 91:2001–2021CrossRef Pickering SU, Spencer U (1907) CXCVI.—emulsions. J Chem Soc T 91:2001–2021CrossRef
24.
go back to reference Guang JW, Ma H (2016) Recent studies of Pickering emulsions: particles make the difference. Small 12:4633CrossRef Guang JW, Ma H (2016) Recent studies of Pickering emulsions: particles make the difference. Small 12:4633CrossRef
25.
go back to reference Mikulcová V, Bordes R, Kašpárková V (2016) On the preparation and antibacterial activity of emulsions stabilized with nanocellulose particles. Food Hydrocoll 61:780–792CrossRef Mikulcová V, Bordes R, Kašpárková V (2016) On the preparation and antibacterial activity of emulsions stabilized with nanocellulose particles. Food Hydrocoll 61:780–792CrossRef
26.
go back to reference Paximada P, Tsouko E, Kopsahelis N (2016) Bacterial cellulose as stabilizer of o/w emulsions. Food Hydrocoll 53:225–232CrossRef Paximada P, Tsouko E, Kopsahelis N (2016) Bacterial cellulose as stabilizer of o/w emulsions. Food Hydrocoll 53:225–232CrossRef
27.
go back to reference Winuprasith T, Suphantharika M (2013) Microfibrillated cellulose from mangosteen (Garcinia mangostana L.) rind: preparation, characterization, and evaluation as an emulsion stabilizer. Food Hydrocoll 32:383–394CrossRef Winuprasith T, Suphantharika M (2013) Microfibrillated cellulose from mangosteen (Garcinia mangostana L.) rind: preparation, characterization, and evaluation as an emulsion stabilizer. Food Hydrocoll 32:383–394CrossRef
28.
go back to reference Capron I, Cathala B (2013) Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals. Biomacromol 14:291–296CrossRef Capron I, Cathala B (2013) Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals. Biomacromol 14:291–296CrossRef
29.
go back to reference Okada M, Maeda H, Fujii S, Furuzono T (2012) Formation of Pickering emulsions stabilized via interaction between nanoparticles dispersed in aqueous phase and polymer end groups dissolved in oil phase. Langmuir 28:9405–9412CrossRef Okada M, Maeda H, Fujii S, Furuzono T (2012) Formation of Pickering emulsions stabilized via interaction between nanoparticles dispersed in aqueous phase and polymer end groups dissolved in oil phase. Langmuir 28:9405–9412CrossRef
30.
go back to reference Jia C, Chen LH, Shao ZQ (2017) Using a fully recyclable dicarboxylic acid for producing dispersible and thermally stable cellulose nanomaterials from different cellulosic sources. Cellulose 6:2483–2498CrossRef Jia C, Chen LH, Shao ZQ (2017) Using a fully recyclable dicarboxylic acid for producing dispersible and thermally stable cellulose nanomaterials from different cellulosic sources. Cellulose 6:2483–2498CrossRef
31.
go back to reference Niu FG, Li MY, Huang Q (2017) The characteristic and dispersion stability of nanocellulose produced by mixed acid hydrolysis and ultrasonic assistance. Carbohydr Polym 165:197–204CrossRef Niu FG, Li MY, Huang Q (2017) The characteristic and dispersion stability of nanocellulose produced by mixed acid hydrolysis and ultrasonic assistance. Carbohydr Polym 165:197–204CrossRef
32.
go back to reference Cunha AG, Mougel JB, Cathala B (2014) Preparation of double Pickering emulsions stabilized by chemically tailored nanocelluloses. Langmuir 30:9327–9335CrossRef Cunha AG, Mougel JB, Cathala B (2014) Preparation of double Pickering emulsions stabilized by chemically tailored nanocelluloses. Langmuir 30:9327–9335CrossRef
33.
go back to reference Tonoli GHD, Teixeira EM, Corrêa AC (2012) Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89:80–88CrossRef Tonoli GHD, Teixeira EM, Corrêa AC (2012) Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89:80–88CrossRef
34.
go back to reference Carrillo CA, Nypelö TE, Rojas OJ (2015) Cellulose nanofibrils for one-step stabilization of multiple emulsions (W/O/W) based on soybean oil. J Colloid Interface Sci 445:166–173CrossRef Carrillo CA, Nypelö TE, Rojas OJ (2015) Cellulose nanofibrils for one-step stabilization of multiple emulsions (W/O/W) based on soybean oil. J Colloid Interface Sci 445:166–173CrossRef
35.
go back to reference McClements DJ (2015) Food emulsions: principles, practices, and techniques, 2nd edn. CRC Press, FloridaCrossRef McClements DJ (2015) Food emulsions: principles, practices, and techniques, 2nd edn. CRC Press, FloridaCrossRef
Metadata
Title
Redispersibility of cellulose nanoparticles modified by phenyltrimethoxysilane and its application in stabilizing Pickering emulsions
Authors
Xinfang Zhang
Ziqiang Shao
Yi Zhou
Jie Wei
Weidong He
Shuo Wang
Xiaofu Dai
Jiaying Ren
Publication date
28-05-2019
Publisher
Springer US
Published in
Journal of Materials Science / Issue 17/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03691-6

Other articles of this Issue 17/2019

Journal of Materials Science 17/2019 Go to the issue

Premium Partners