Skip to main content
Top

2017 | OriginalPaper | Chapter

Reducing Training Environments in Evolutionary Robotics Through Ecological Modularity

Authors : Collin Cappelle, Anton Bernatskiy, Josh Bongard

Published in: Biomimetic and Biohybrid Systems

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Due to the large number of evaluations required, evolutionary robotics experiments are generally conducted in simulated environments. One way to increase the generality of a robot’s behavior is to evolve it in multiple environments. These environment spaces can be defined by the number of free parameters (f) and the number of variations each free parameter can take (n). Each environment space then has \(n^f\) individual environments. For a robot to be fit in the environment space it must perform well in each of the \(n^f\) environments. Thus the number of environments grows exponentially as n and f are increased. To mitigate the problem of having to evolve a robot in each environment in the space we introduce the concept of ecological modularity. Ecological modularity is here defined as the robot’s modularity with respect to free parameters in its environment space. We show that if a robot is modular along m of the free parameters in its environment space, it only needs to be evolved in \(n^{f-m+1}\) environments to be fit in all of the \(n^f\) environments. This work thus presents a heretofore unknown relationship between the modularity of an agent and its ability to generalize evolved behaviors in new environments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bongard, J., Bernatskiy, A., Livingston, K., Livingston, N., Long, J., Smith, M.: Evolving robot morphology facilitates the evolution of neural modularity and evolvability. In: Proceedings of the 2015 Genetic and Evolutionary Computation Conference, p. 129136. ACM, Madrid (2015) Bongard, J., Bernatskiy, A., Livingston, K., Livingston, N., Long, J., Smith, M.: Evolving robot morphology facilitates the evolution of neural modularity and evolvability. In: Proceedings of the 2015 Genetic and Evolutionary Computation Conference, p. 129136. ACM, Madrid (2015)
2.
go back to reference Bongard, J.: Morphological change in machines accelerates the evolution of robust behavior. Proc. Nat. Acad. Sci. 108(4), 1234–1239 (2011)CrossRef Bongard, J.: Morphological change in machines accelerates the evolution of robust behavior. Proc. Nat. Acad. Sci. 108(4), 1234–1239 (2011)CrossRef
3.
go back to reference Bongard, J.C.: Spontaneous evolution of structural modularity in robot neural network controllers. In: Proceedings of the 2011 Genetic and Evolutionary Computation Conference, pp. 251–258. ACM, Dublin (2011) Bongard, J.C.: Spontaneous evolution of structural modularity in robot neural network controllers. In: Proceedings of the 2011 Genetic and Evolutionary Computation Conference, pp. 251–258. ACM, Dublin (2011)
4.
go back to reference Cappelle, C.K., Bernatskiy, A., Livingston, K., Livingston, N., Bongard, J.: Morphological modularity can enable the evolution of robot behavior to scale linearly with the number of environmental features. Front. Rob. AI 3, 59 (2016) Cappelle, C.K., Bernatskiy, A., Livingston, K., Livingston, N., Bongard, J.: Morphological modularity can enable the evolution of robot behavior to scale linearly with the number of environmental features. Front. Rob. AI 3, 59 (2016)
5.
go back to reference Clune, J., Mouret, J.B., Lipson, H.: The evolutionary origins of modularity. Proc. R. Soc. B Biol. Sci. 280(1755), 20122863 (2013)CrossRef Clune, J., Mouret, J.B., Lipson, H.: The evolutionary origins of modularity. Proc. R. Soc. B Biol. Sci. 280(1755), 20122863 (2013)CrossRef
6.
go back to reference Ellefsen, K.O., Mouret, J.B., Clune, J.: Neural modularity helps organisms evolve to learn new skills without forgetting old skills. PLoS Comput. Biol. 11(4), e1004128 (2015)CrossRef Ellefsen, K.O., Mouret, J.B., Clune, J.: Neural modularity helps organisms evolve to learn new skills without forgetting old skills. PLoS Comput. Biol. 11(4), e1004128 (2015)CrossRef
7.
go back to reference Espinosa-Soto, C., Wagner, A.: Specialization can drive the evolution of modularity. PLoS Comput. Biol. 6(3), e1000719 (2010)MathSciNetCrossRef Espinosa-Soto, C., Wagner, A.: Specialization can drive the evolution of modularity. PLoS Comput. Biol. 6(3), e1000719 (2010)MathSciNetCrossRef
8.
go back to reference French, R.M.: Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3(4), 128–135 (1999)CrossRef French, R.M.: Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3(4), 128–135 (1999)CrossRef
9.
go back to reference Gruau, F.: Automatic definition of modular neural networks. Adapt. Behav. 3, 151–183 (1994)CrossRef Gruau, F.: Automatic definition of modular neural networks. Adapt. Behav. 3, 151–183 (1994)CrossRef
10.
go back to reference Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation in evolutionary robotics. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 704–720. Springer, Heidelberg (1995). doi:10.1007/3-540-59496-5_337 CrossRef Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation in evolutionary robotics. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 704–720. Springer, Heidelberg (1995). doi:10.​1007/​3-540-59496-5_​337 CrossRef
11.
go back to reference Kashtan, N., Alon, U.: Spontaneous evolution of modularity and network motifs. PNAS 102(39), 13773 (2005)CrossRef Kashtan, N., Alon, U.: Spontaneous evolution of modularity and network motifs. PNAS 102(39), 13773 (2005)CrossRef
12.
go back to reference Lehman, J., Risi, S., D’Ambrosio, D., Stanley, K.O.: Encouraging reactivity to create robust machines. Adapt. Behav. 21, 484–500 (2013)CrossRef Lehman, J., Risi, S., D’Ambrosio, D., Stanley, K.O.: Encouraging reactivity to create robust machines. Adapt. Behav. 21, 484–500 (2013)CrossRef
13.
go back to reference Lipson, H., Pollack, J.B., Suh, N.P., Wainwright, P.: On the origin of modular variation. Evolution 56(8), 1549–1556 (2002)CrossRef Lipson, H., Pollack, J.B., Suh, N.P., Wainwright, P.: On the origin of modular variation. Evolution 56(8), 1549–1556 (2002)CrossRef
14.
go back to reference Matarić, M., Cliff, D.: Challenges in evolving controllers for physical robots. Rob. Auton. Syst. 19(1), 67–83 (1996)CrossRef Matarić, M., Cliff, D.: Challenges in evolving controllers for physical robots. Rob. Auton. Syst. 19(1), 67–83 (1996)CrossRef
15.
go back to reference Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)CrossRef Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)CrossRef
16.
go back to reference Schmidt, M., Lipson, H.: Age-fitness pareto optimization. In: Riolo, R., McConaghy, T., Vladislavleva, E. (eds.) Genetic Programming Theory and Practice VIII. Genetic and Evolutionary Computation, vol. 8, pp. 129–146. Springer, New York (2011). doi:10.1007/978-1-4419-7747-2_8 CrossRef Schmidt, M., Lipson, H.: Age-fitness pareto optimization. In: Riolo, R., McConaghy, T., Vladislavleva, E. (eds.) Genetic Programming Theory and Practice VIII. Genetic and Evolutionary Computation, vol. 8, pp. 129–146. Springer, New York (2011). doi:10.​1007/​978-1-4419-7747-2_​8 CrossRef
17.
go back to reference Wagner, G., Pavlicev, M., Cheverud, J.: The road to modularity. Nat. Rev. Genetics 8(12), 921–931 (2007)CrossRef Wagner, G., Pavlicev, M., Cheverud, J.: The road to modularity. Nat. Rev. Genetics 8(12), 921–931 (2007)CrossRef
18.
go back to reference Yamashita, Y., Tani, J.: Emergence of functional hierarchy in a multiple timescale neural network model: a humanoid robot experiment. PLoS Comput. Biol. 4(11), e1000220 (2008)CrossRef Yamashita, Y., Tani, J.: Emergence of functional hierarchy in a multiple timescale neural network model: a humanoid robot experiment. PLoS Comput. Biol. 4(11), e1000220 (2008)CrossRef
Metadata
Title
Reducing Training Environments in Evolutionary Robotics Through Ecological Modularity
Authors
Collin Cappelle
Anton Bernatskiy
Josh Bongard
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-63537-8_9

Premium Partner