Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 7/2013

01-07-2013

Reduction and characterizations of iron particles: influence of reduction parameters

Authors: Oznur Karaagac, Hakan Kockar, Burcak Ebin, Sebahattin Gurmen

Published in: Journal of Materials Science: Materials in Electronics | Issue 7/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Iron particles have some applications as electromagnetic devices in magnetic recording and data storage technology due to their small sizes and high data storage capacity. The devices can be advanced by improving the properties of existing materials according to the production parameters. Thus, the influences of reduction parameters on the properties of iron particles were studied. The iron particles were reduced from superparamagnetic iron oxide nanoparticles by altering reduction parameters under hydrogen atmosphere at high (400 °C) temperature. The structural analysis of the films was carried out using the X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) techniques. The XRD data revealed that the crystal textures changed for the particles reduced at each parameter. And, the crystal structure turns from the cubic spinel structure of magnetite and body centered cubic (bcc) structure of iron to the bcc iron as the reduction time increases from 15 to 240 min. Then, the similar structure change can be seen for the samples reduced at increasing hydrogen flow rates. The HRTEM studies revealed that the surface morphology of the films strongly depend on the flow rate. Finally, magnetite peaks weaken and then disappear as the precursor mass decreases to the lowest value. The average crystallite sizes were found to be consistent with changing crystal structure. Furthermore, the magnetic characteristics studied by a vibrating sample magnetometer were observed to be affected by the parameters. Besides, magnetic differences may arise from the variation of crystal structure and crystal sizes caused by individual reduction parameters of reduction time, hydrogen flow rate and precursor mass.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D.L. Huber, Synthesis, properties, and applications of iron nanoparticles. Small 1(5), 482–501 (2005)CrossRef D.L. Huber, Synthesis, properties, and applications of iron nanoparticles. Small 1(5), 482–501 (2005)CrossRef
2.
go back to reference L.C. Varanda, M. Jafelicci Jr., P. Tartaj, K. O’Grady, T. Gonzales-Carreno, M.P. Morales, T. Munoz, C.J. Serna, Structural and magnetic transformation of monodispersed iron oxide particles in a reducing atmosphere. J. Appl. Phys. 92, 2079–2085 (2002)CrossRef L.C. Varanda, M. Jafelicci Jr., P. Tartaj, K. O’Grady, T. Gonzales-Carreno, M.P. Morales, T. Munoz, C.J. Serna, Structural and magnetic transformation of monodispersed iron oxide particles in a reducing atmosphere. J. Appl. Phys. 92, 2079–2085 (2002)CrossRef
3.
go back to reference L.C. Varanda, G.F. Goya, M.P. Morales, R.F.C. Marques, R.H.M. Godoi, M. Jafelicci Jr., C.J. Serna, Magnetic properties of acicular ultrafine iron particles. IEEE Trans. Magn. 38(5), 1907–1909 (2002)CrossRef L.C. Varanda, G.F. Goya, M.P. Morales, R.F.C. Marques, R.H.M. Godoi, M. Jafelicci Jr., C.J. Serna, Magnetic properties of acicular ultrafine iron particles. IEEE Trans. Magn. 38(5), 1907–1909 (2002)CrossRef
4.
go back to reference R. Pozas, M.P. Morales, C.J. Serna, M. Ocana, Acicular iron nanoparticles protected against sintering with aluminium oxide. Bol. Soc. Esp. Ceram. 43(4), 796–800 (2004)CrossRef R. Pozas, M.P. Morales, C.J. Serna, M. Ocana, Acicular iron nanoparticles protected against sintering with aluminium oxide. Bol. Soc. Esp. Ceram. 43(4), 796–800 (2004)CrossRef
5.
go back to reference B. Lv, Y. Xu, D. Wu, Y. Sun, Preparation and magnetic properties of spindle porous iron nanoparticles. Mater. Res. Bull. 44, 961–965 (2009)CrossRef B. Lv, Y. Xu, D. Wu, Y. Sun, Preparation and magnetic properties of spindle porous iron nanoparticles. Mater. Res. Bull. 44, 961–965 (2009)CrossRef
6.
go back to reference K. Iwasaki, T. Itoh, T. Yamamura, Production conditions of acicular magnetic metal nanoparticles for magnetic recording. Mater. Trans. 46(6), 1368–1377 (2005)CrossRef K. Iwasaki, T. Itoh, T. Yamamura, Production conditions of acicular magnetic metal nanoparticles for magnetic recording. Mater. Trans. 46(6), 1368–1377 (2005)CrossRef
7.
go back to reference K. Bridger, J. Watts, M. Tadros, X. Gang, S.H. Liou, C.L. Chien, Magnetic characteristics of ultrafine Fe particles reduced from uniform iron oxide particles. J. Appl. Phys. 61(8), 3323–3325 (1987)CrossRef K. Bridger, J. Watts, M. Tadros, X. Gang, S.H. Liou, C.L. Chien, Magnetic characteristics of ultrafine Fe particles reduced from uniform iron oxide particles. J. Appl. Phys. 61(8), 3323–3325 (1987)CrossRef
8.
go back to reference X. Fan, J. Guan, W. Wang, G. Tong, Morphology evolution, magnetic and microwave absorption properties of nano/submicrometre iron particles obtained at different reduced temperatures. J. Phys. D Appl. Phys. 42(7), 075006 (2009)CrossRef X. Fan, J. Guan, W. Wang, G. Tong, Morphology evolution, magnetic and microwave absorption properties of nano/submicrometre iron particles obtained at different reduced temperatures. J. Phys. D Appl. Phys. 42(7), 075006 (2009)CrossRef
9.
go back to reference E. Hilmawan, S. Mori, M. Kumita, Y. Takako, Improvement in coercivity of magnetic iron fine particles produced from alpha-FeOOH. Kagaku Kogaku Ronbunshu 27(1), 63–68 (2001)CrossRef E. Hilmawan, S. Mori, M. Kumita, Y. Takako, Improvement in coercivity of magnetic iron fine particles produced from alpha-FeOOH. Kagaku Kogaku Ronbunshu 27(1), 63–68 (2001)CrossRef
10.
go back to reference T. Chappuis, I. Bobowska, S. Hengsberger, E. Vanoli, H. Dietsch, Influence of the hydrogen reduction time and temperature on the morphology evolution and hematite/magnetite conversion of spindle-type hematite nanoparticles. Chimia 65(12), 979–981 (2011)CrossRef T. Chappuis, I. Bobowska, S. Hengsberger, E. Vanoli, H. Dietsch, Influence of the hydrogen reduction time and temperature on the morphology evolution and hematite/magnetite conversion of spindle-type hematite nanoparticles. Chimia 65(12), 979–981 (2011)CrossRef
11.
12.
go back to reference O. Karaagac, Synthesis and characterization of superparamagnetic nanoparticles with optimized saturation magnetization and their application of enzyme immobilization. PhD Thesis, Balikesir University, Institute of Science (2011) O. Karaagac, Synthesis and characterization of superparamagnetic nanoparticles with optimized saturation magnetization and their application of enzyme immobilization. PhD Thesis, Balikesir University, Institute of Science (2011)
13.
go back to reference G. Munteanu, L. Ilieva, D. Andreeva, Kinetic parameters obtained from TPR data for α-Fe2O3 and Au/α-Fe2O3 systems. Thermochim. Acta 291, 171–177 (1997)CrossRef G. Munteanu, L. Ilieva, D. Andreeva, Kinetic parameters obtained from TPR data for α-Fe2O3 and Au/α-Fe2O3 systems. Thermochim. Acta 291, 171–177 (1997)CrossRef
14.
go back to reference C.P. Hunt, M.B. Moskowitz, S.K. Banerjee, Magnetic Properties of Rocks and Minerals in: Rock Physics and Phase Relations A Handbook of Physical Constants (American Geophysical Union, Washington, DC, USA, 1995) C.P. Hunt, M.B. Moskowitz, S.K. Banerjee, Magnetic Properties of Rocks and Minerals in: Rock Physics and Phase Relations A Handbook of Physical Constants (American Geophysical Union, Washington, DC, USA, 1995)
15.
go back to reference B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, USA, 1978) B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, USA, 1978)
16.
go back to reference W. Wu, Q.G. He, C.Z. Jiang, Magnetic iron oxide nanoparticles: synthesis and surface functualization strategies. Nanoscale Res. Lett. 3, 397–415 (2008)CrossRef W. Wu, Q.G. He, C.Z. Jiang, Magnetic iron oxide nanoparticles: synthesis and surface functualization strategies. Nanoscale Res. Lett. 3, 397–415 (2008)CrossRef
17.
go back to reference O. Karaagac, H. Kockar, S. Beyaz, T. Tanrisever, A simple way to synthesize superparamagnetic iron oxide nanoparticles in air atmosphere: iron ion concentration effect. IEEE Trans. Magn. 46(12), 3978–3983 (2010)CrossRef O. Karaagac, H. Kockar, S. Beyaz, T. Tanrisever, A simple way to synthesize superparamagnetic iron oxide nanoparticles in air atmosphere: iron ion concentration effect. IEEE Trans. Magn. 46(12), 3978–3983 (2010)CrossRef
Metadata
Title
Reduction and characterizations of iron particles: influence of reduction parameters
Authors
Oznur Karaagac
Hakan Kockar
Burcak Ebin
Sebahattin Gurmen
Publication date
01-07-2013
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 7/2013
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-013-1139-9

Other articles of this Issue 7/2013

Journal of Materials Science: Materials in Electronics 7/2013 Go to the issue