Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 9/2020

27-04-2020

Reduction and Immobilization of Chromate Using Nanometric Pyrite

Authors: Amelia Bergeson, Travis Reed, Allen W. Apblett

Published in: Journal of Materials Engineering and Performance | Issue 9/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Two very fine pyrites were prepared using a top-down and a bottom-up method. A natural pyrite was extensively ball-milled and then sieved to obtain the fraction less than 25 µm (surface area 17 m2/g), while sub-micrometer pyrite (FeS2) rods with a surface area of 77 m2/g were prepared by the hydrothermal reaction of ferrous sulfate with sodium sulfite. The ground natural pyrite was found to fairly rapidly reduce chromium(VI) in a 100 ppm solution to chromium(III), but it only immobilized 65.6% of the chromium(III) product so it failed to lower the total chromium below the maximum contaminant level (MCL) for drinking water. However, the synthetic sub-micrometer pyrite completely reduced the chromium(VI) to chromium(III) within one minute and to reduce the total chromium concentration below the detection limit of 0.5 ppb within 3 min. The reactivity of FeS2 toward chromium(VI) does not correlate well with surface area due to the complex series of reaction that occur in both the redox and metal immobilization processes. Nevertheless, size reduction makes it progressively possible to completely remove chromium from chromate-containing solutions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Dhal, H.N. Thatoi, N.N. Das, and B.D. Pandey, Chemical and Microbial Remediation of Hexavalent Chromium from Contaminated Soil and Mining/Metallurgical Solid Waste: A Review, J. Hazard. Mater., 2013, 250-251, p 272–291 B. Dhal, H.N. Thatoi, N.N. Das, and B.D. Pandey, Chemical and Microbial Remediation of Hexavalent Chromium from Contaminated Soil and Mining/Metallurgical Solid Waste: A Review, J. Hazard. Mater., 2013, 250-251, p 272–291
2.
go back to reference A.L. Rowbotham, L.S. Levy, and L.K. Shuker, Chromium in the Environment: An Evaluation of Exposure of the UK General Population and Possible Adverse Health Effect, J. Toxicol. Environ. Health Part B, 2000, 3(3), p 145–178 A.L. Rowbotham, L.S. Levy, and L.K. Shuker, Chromium in the Environment: An Evaluation of Exposure of the UK General Population and Possible Adverse Health Effect, J. Toxicol. Environ. Health Part B, 2000, 3(3), p 145–178
3.
go back to reference R.A. Anderson, Nutritional Role of Chromium, Sci. Total Environ., 1981, 17(1), p 13–29 R.A. Anderson, Nutritional Role of Chromium, Sci. Total Environ., 1981, 17(1), p 13–29
4.
go back to reference J.B. Vincent, Elucidating a Biological Role for Chromium at a Molecular Level, Acc. Chem. Res., 2000, 33(7), p 503–510 J.B. Vincent, Elucidating a Biological Role for Chromium at a Molecular Level, Acc. Chem. Res., 2000, 33(7), p 503–510
5.
go back to reference H.F. Smyth, C.P. Carpenter, C.S. Weil, U.C. Pozzani, J.A. Striegel, and J.S. Nycum, Range-Finding Toxicity Data: List VII, Am. Ind. Hyg. Assoc. J., 1969, 30(5), p 470–476 H.F. Smyth, C.P. Carpenter, C.S. Weil, U.C. Pozzani, J.A. Striegel, and J.S. Nycum, Range-Finding Toxicity Data: List VII, Am. Ind. Hyg. Assoc. J., 1969, 30(5), p 470–476
6.
go back to reference D.B. Kaufman, W. DiNicola, and R. McIntosh, Acute Potassium Dichromate Poisoning: Treated by Peritoneal Dialysis, Am. J. Dis. Child., 1970, 119(4), p 374–376 D.B. Kaufman, W. DiNicola, and R. McIntosh, Acute Potassium Dichromate Poisoning: Treated by Peritoneal Dialysis, Am. J. Dis. Child., 1970, 119(4), p 374–376
7.
go back to reference L.A. Saryan and M. Reedy, Chromium Determinations in a Case of Chromic Acid Ingestion, J. Anal. Toxicol., 1988, 12(3), p 162–164 L.A. Saryan and M. Reedy, Chromium Determinations in a Case of Chromic Acid Ingestion, J. Anal. Toxicol., 1988, 12(3), p 162–164
8.
go back to reference R.W. Puls, D.A. Clark, C.J. Paul, and J. Vardy, Transport and Transformation of Hexavalent Chromium Through Soils and into Ground Water, J. Soil Contam., 1994, 3, p 203–224 R.W. Puls, D.A. Clark, C.J. Paul, and J. Vardy, Transport and Transformation of Hexavalent Chromium Through Soils and into Ground Water, J. Soil Contam., 1994, 3, p 203–224
9.
go back to reference J.H. Espenson, Rate studies on the Primary Step of the Reduction of Chromium(VI) by Iron(II), J. Am. Chem. Soc., 1970, 92, p 1180 J.H. Espenson, Rate studies on the Primary Step of the Reduction of Chromium(VI) by Iron(II), J. Am. Chem. Soc., 1970, 92, p 1180
10.
go back to reference S.E. Fendorf and G. Li, Kinetics of Chromate Reduction by Ferrous Iron, Environ. Sci. Technol., 1995, 30, p 1614–1617 S.E. Fendorf and G. Li, Kinetics of Chromate Reduction by Ferrous Iron, Environ. Sci. Technol., 1995, 30, p 1614–1617
11.
go back to reference E. Salazar, M.I. Ortiz, and A.M. Urtiaga, Kinetics of the Separation and Concentration of Chromium (VI) with Emulsion Liquid Membranes, Ind. Eng. Chem. Res., 1992, 31, p 1523 E. Salazar, M.I. Ortiz, and A.M. Urtiaga, Kinetics of the Separation and Concentration of Chromium (VI) with Emulsion Liquid Membranes, Ind. Eng. Chem. Res., 1992, 31, p 1523
12.
go back to reference J.C. Seaman, P.M. Bertsch, and L. Schwallie, In situ Cr(VI) Reduction Within Coarse Textured, Oxide-Coated Soil and Aquifer Systems Using Fe(II) Solution, Environ. Sci. Technol., 1999, 33, p 938–944 J.C. Seaman, P.M. Bertsch, and L. Schwallie, In situ Cr(VI) Reduction Within Coarse Textured, Oxide-Coated Soil and Aquifer Systems Using Fe(II) Solution, Environ. Sci. Technol., 1999, 33, p 938–944
13.
go back to reference L.E. Eary and D. Rai, Chromate Removal from Aqueous Wastes by Reduction with Ferrous ION, Environ. Sci. Technol., 1988, 22, p 972–977 L.E. Eary and D. Rai, Chromate Removal from Aqueous Wastes by Reduction with Ferrous ION, Environ. Sci. Technol., 1988, 22, p 972–977
14.
go back to reference D.W. Blowes, C.J. Ptacek, and J.L. Jambor, In-situ Remediation of Cr(VI)-Contaminated Groundwater Using Permeable Reactive Walls: Laboratory Studies, Environ. Sci. Technol., 1997, 31, p 3348–3357 D.W. Blowes, C.J. Ptacek, and J.L. Jambor, In-situ Remediation of Cr(VI)-Contaminated Groundwater Using Permeable Reactive Walls: Laboratory Studies, Environ. Sci. Technol., 1997, 31, p 3348–3357
15.
go back to reference S.J. Fuller, D.I. Stewart, and I.T. Burke, Chromate Reduction in Highly Alkaline Groundwater by Zerovalent Iron: Implications for Its Use in a Permeable Reactive Barrier, Ind. Eng. Chem. Res., 2013, 52(13), p 4704–4714 S.J. Fuller, D.I. Stewart, and I.T. Burke, Chromate Reduction in Highly Alkaline Groundwater by Zerovalent Iron: Implications for Its Use in a Permeable Reactive Barrier, Ind. Eng. Chem. Res., 2013, 52(13), p 4704–4714
16.
go back to reference F. Battaglia-Brunet, S. Touze, C. Michel, and I. Ignatiadis, Treatment of Chromate-Polluted Groundwater in a 200 dm3 Pilot Bioreactor Fed with Hydrogen, J. Chem. Technol. Biotechnol., 2006, 81(9), p 1506–1513 F. Battaglia-Brunet, S. Touze, C. Michel, and I. Ignatiadis, Treatment of Chromate-Polluted Groundwater in a 200 dm3 Pilot Bioreactor Fed with Hydrogen, J. Chem. Technol. Biotechnol., 2006, 81(9), p 1506–1513
17.
go back to reference C. Kim, Q. Zhou, B. Deng, E.C. Thornton, and H. Xu, Chromium (VI) Reduction by Hydrogen Sulfide in Aqueous Media: Stoichiometry and Kinetics, Environ. Sci. Technol., 2001, 35(11), p 2219–2225 C. Kim, Q. Zhou, B. Deng, E.C. Thornton, and H. Xu, Chromium (VI) Reduction by Hydrogen Sulfide in Aqueous Media: Stoichiometry and Kinetics, Environ. Sci. Technol., 2001, 35(11), p 2219–2225
18.
go back to reference M. Pettine, F.J. Millero, and R. Passino, Reduction of Chromium(VI) with Hydrogen Sulfide in NaCl Media, Mar. Chem., 1994, 46, p 335–344 M. Pettine, F.J. Millero, and R. Passino, Reduction of Chromium(VI) with Hydrogen Sulfide in NaCl Media, Mar. Chem., 1994, 46, p 335–344
19.
go back to reference L. Legrand, A. El Figuigui, F. Mercier, and A. Chausse, Reduction of Aqueous Chromate by Fe(II)/Fe(III) Carbonate Green Rust: Kinetic and Mechanistic Studies, Environ. Sci. Technol., 2004, 38(17), p 4587–4595 L. Legrand, A. El Figuigui, F. Mercier, and A. Chausse, Reduction of Aqueous Chromate by Fe(II)/Fe(III) Carbonate Green Rust: Kinetic and Mechanistic Studies, Environ. Sci. Technol., 2004, 38(17), p 4587–4595
20.
go back to reference D.L. Bond and S. Fendorf, Kinetics and Structural Constraints of Chromate Reduction by Green Rusts, Environ. Sci. Technol., 2003, 37(12), p 2750–2757 D.L. Bond and S. Fendorf, Kinetics and Structural Constraints of Chromate Reduction by Green Rusts, Environ. Sci. Technol., 2003, 37(12), p 2750–2757
21.
go back to reference D.A. Dixon, N.P. Sadler, and T.P. Dasgupta, Oxidation of Biological Substrates by Chromium(VI). Part 1. Mechanism of the Oxidation of L-Ascorbic Acid in Aqueous Solution, J. Chem. Soc., Dalton Trans., 1993, 23, p 3489–3495 D.A. Dixon, N.P. Sadler, and T.P. Dasgupta, Oxidation of Biological Substrates by Chromium(VI). Part 1. Mechanism of the Oxidation of L-Ascorbic Acid in Aqueous Solution, J. Chem. Soc., Dalton Trans., 1993, 23, p 3489–3495
22.
go back to reference K.N. Barber, C.K. Perkins, and A.W. Apblett, Reduction of Chromate by Molybdenum Hydrogen Bronze, Can. J. Chem., 2015, 94(4), p 401–405 K.N. Barber, C.K. Perkins, and A.W. Apblett, Reduction of Chromate by Molybdenum Hydrogen Bronze, Can. J. Chem., 2015, 94(4), p 401–405
23.
go back to reference A. Vengosh, R. Coyte, J. Karr, J.S. Harkness, A.J. Kondash, L.S. Ruhl, R.B. Merola, and G.S. Dywer, Origin of Hexavalent Chromium in Drinking Water Wells from the Piedmont Aquifers of North Carolina, Environ. Sci. Technol. Lett., 2016, 3(12), p 409–414 A. Vengosh, R. Coyte, J. Karr, J.S. Harkness, A.J. Kondash, L.S. Ruhl, R.B. Merola, and G.S. Dywer, Origin of Hexavalent Chromium in Drinking Water Wells from the Piedmont Aquifers of North Carolina, Environ. Sci. Technol. Lett., 2016, 3(12), p 409–414
24.
go back to reference Y. Inoue, T. Sakai, and H. Kumagai, Simultaneous Determination of Chromium(III) and Chromium(VI) by Ion Chromatography with Inductively Coupled Plasma Mass Spectrometry, J. Chromatogr. A, 1995, 706(1), p 127–136 Y. Inoue, T. Sakai, and H. Kumagai, Simultaneous Determination of Chromium(III) and Chromium(VI) by Ion Chromatography with Inductively Coupled Plasma Mass Spectrometry, J. Chromatogr. A, 1995, 706(1), p 127–136
25.
go back to reference F.T. Stanin, The Transport and Fate of Chromium(VI) in the Environment, CRC Press LLC, Boca Raton, 2005, p 165–214 F.T. Stanin, The Transport and Fate of Chromium(VI) in the Environment, CRC Press LLC, Boca Raton, 2005, p 165–214
26.
go back to reference C. Oze, D.K. Bird, and S. Fendorf, Genesis of Hexavalent Chromium from Natural Sources in Soil and Groundwater, Proc. Natl. Acad. Sci., 2007, 104(16), p 6544 C. Oze, D.K. Bird, and S. Fendorf, Genesis of Hexavalent Chromium from Natural Sources in Soil and Groundwater, Proc. Natl. Acad. Sci., 2007, 104(16), p 6544
27.
go back to reference V.M. Burns and R.G. Burns, Mineralogy of Chromium, Geochim. Cosmochim. Acta, 1975, 39(6), p 903–910 V.M. Burns and R.G. Burns, Mineralogy of Chromium, Geochim. Cosmochim. Acta, 1975, 39(6), p 903–910
28.
go back to reference T.S. Chatterjee, Ed., Reduction and Removal of hexavalent Chromium from Effluent Water Using Pyrites, Hindustal Fertilizer Corp., India, 1980 T.S. Chatterjee, Ed., Reduction and Removal of hexavalent Chromium from Effluent Water Using Pyrites, Hindustal Fertilizer Corp., India, 1980
29.
go back to reference C.-M. Chon, J.G. Kim, and H.-S. Moon, Kinetics of chromate reduction by pyrite and biotite under acidic conditions, Appl. Geochem., 2006, 21(9), p 1469–1481 C.-M. Chon, J.G. Kim, and H.-S. Moon, Kinetics of chromate reduction by pyrite and biotite under acidic conditions, Appl. Geochem., 2006, 21(9), p 1469–1481
30.
go back to reference C.-M. Chon, J.G. Kim, and H.-S. Moon, Evaluating the Transport and Removal of Chromate Using Pyrite and Biotite Columns, Hydrol. Processes, 2007, 21(14), p 1957–1967 C.-M. Chon, J.G. Kim, and H.-S. Moon, Evaluating the Transport and Removal of Chromate Using Pyrite and Biotite Columns, Hydrol. Processes, 2007, 21(14), p 1957–1967
31.
go back to reference F. Demoisson, M. Mullet, and B. Humbert, Pyrite Oxidation by Hexavalent Chromium: Investigation of the Chemical Processes by Monitoring of Aqueous Metal Species, Environ. Sci. Technol., 2005, 39(22), p 8747–8752 F. Demoisson, M. Mullet, and B. Humbert, Pyrite Oxidation by Hexavalent Chromium: Investigation of the Chemical Processes by Monitoring of Aqueous Metal Species, Environ. Sci. Technol., 2005, 39(22), p 8747–8752
32.
go back to reference C.S. Doyle, T. Kendelewicz, B.C. Bostick, and G.E. Brown, Soft x-Ray Spectroscopic Studies of the Reaction of Fractured Pyrite Surfaces with Cr(VI)-Containing Aqueous Solutions, Geochim. Cosmochim. Acta, 2004, 68(21), p 4287–4299 C.S. Doyle, T. Kendelewicz, B.C. Bostick, and G.E. Brown, Soft x-Ray Spectroscopic Studies of the Reaction of Fractured Pyrite Surfaces with Cr(VI)-Containing Aqueous Solutions, Geochim. Cosmochim. Acta, 2004, 68(21), p 4287–4299
33.
go back to reference Z. Houda, Q. Wang, Y. Wu, and X. Xu, Reduction Remediation of Hexavalent Chromium by Pyrite in the Aqueous Phase, J. Appl. Sci., 2007, 7(11), p 1522–1527 Z. Houda, Q. Wang, Y. Wu, and X. Xu, Reduction Remediation of Hexavalent Chromium by Pyrite in the Aqueous Phase, J. Appl. Sci., 2007, 7(11), p 1522–1527
34.
go back to reference C. Kantar, C. Ari, S. Keskin, Z.G. Dogaroglu, A. Karadeniz, and A. Alten, Cr(VI) Removal from Aqueous Systems Using Pyrite as the Reducing Agent: Batch, Spectroscopic and Column Experiments, J. Contam. Hydrol., 2015, 174, p 28–38 C. Kantar, C. Ari, S. Keskin, Z.G. Dogaroglu, A. Karadeniz, and A. Alten, Cr(VI) Removal from Aqueous Systems Using Pyrite as the Reducing Agent: Batch, Spectroscopic and Column Experiments, J. Contam. Hydrol., 2015, 174, p 28–38
35.
go back to reference M. Liang, C. Zhong, B. Liu, P. Zhang, and Y. Chen, Feasibility of Natural Pyrite to Treat Cr(VI)-Containing Waste, Guangzhou Daxue Xuebao, Ziran Kexueban, 2007, 6(1), p 56–59 M. Liang, C. Zhong, B. Liu, P. Zhang, and Y. Chen, Feasibility of Natural Pyrite to Treat Cr(VI)-Containing Waste, Guangzhou Daxue Xuebao, Ziran Kexueban, 2007, 6(1), p 56–59
36.
go back to reference Y.-T. Lin and C.-P. Huang, Reduction of Chromium(VI) by Pyrite in Dilute Aqueous Solutions, Sep. Purif. Technol., 2008, 63(1), p 191–199 Y.-T. Lin and C.-P. Huang, Reduction of Chromium(VI) by Pyrite in Dilute Aqueous Solutions, Sep. Purif. Technol., 2008, 63(1), p 191–199
37.
go back to reference G.W. Luther, III, Pyrite Synthesis Via Polysulfide Compounds, Geochim. Cosmochim. Acta, 1991, 55(10), p 2839–2849 G.W. Luther, III, Pyrite Synthesis Via Polysulfide Compounds, Geochim. Cosmochim. Acta, 1991, 55(10), p 2839–2849
38.
go back to reference E.N. Primo, M.V. Bracamonte, G.L. Luque, P.G. Bercoff, E.P.M. Leiva, and D.E. Barraco, Mechanochemically Synthesized Pyrite and Its Electrochemical Behavior as Cathode for Lithium Batteries, J. Solid State Electrochem., 2019, 23(6), p 1929–1938 E.N. Primo, M.V. Bracamonte, G.L. Luque, P.G. Bercoff, E.P.M. Leiva, and D.E. Barraco, Mechanochemically Synthesized Pyrite and Its Electrochemical Behavior as Cathode for Lithium Batteries, J. Solid State Electrochem., 2019, 23(6), p 1929–1938
39.
go back to reference W.M.B. Roberts, A.L. Walker, and A.S. Buchanan, Chemistry of Pyrite Formation in Aqueous Solution and Its Relation to the Depositional Environment, Miner. Deposita, 1969, 4(1), p 18–29 W.M.B. Roberts, A.L. Walker, and A.S. Buchanan, Chemistry of Pyrite Formation in Aqueous Solution and Its Relation to the Depositional Environment, Miner. Deposita, 1969, 4(1), p 18–29
40.
go back to reference L. Meng, Y.H. Liu, and W. Huang, Synthesis of Pyrite Thin Films Obtained by Thermal-Sulfurating Iron Films at Different Sulfur Atmosphere Pressure, Mater. Sci. Eng., B, 2002, B90(1–2), p 84–89 L. Meng, Y.H. Liu, and W. Huang, Synthesis of Pyrite Thin Films Obtained by Thermal-Sulfurating Iron Films at Different Sulfur Atmosphere Pressure, Mater. Sci. Eng., B, 2002, B90(1–2), p 84–89
41.
go back to reference H. Qin, J. Jia, L. Lin, H. Ni, M. Wang, and L. Meng, Pyrite FeS2 Nanostructures: Synthesis, Properties and Applications, Mater. Sci. Eng., B, 2018, 236–237, p 104–124 H. Qin, J. Jia, L. Lin, H. Ni, M. Wang, and L. Meng, Pyrite FeS2 Nanostructures: Synthesis, Properties and Applications, Mater. Sci. Eng., B, 2018, 236–237, p 104–124
42.
go back to reference H. Xian, J. Zhu, X. Liang, and H. He, Morphology Controllable Syntheses of Micro- and Nano-Iron Pyrite Mono- and Poly-Crystals: A Review, RSC Adv., 2016, 6(38), p 31988–31999 H. Xian, J. Zhu, X. Liang, and H. He, Morphology Controllable Syntheses of Micro- and Nano-Iron Pyrite Mono- and Poly-Crystals: A Review, RSC Adv., 2016, 6(38), p 31988–31999
43.
go back to reference M.V. Morales-Gallardo, A.M. Ayala, M. Pal, M.A. Cortes Jacome, J.A. Toledo Antonio, and N.R. Mathews, Synthesis of Pyrite FeS2 Nanorods by Simple Hydrothermal Method and Its Photocatalytic Activity, Chem. Phys. Lett., 2016, 660, p 93–98 M.V. Morales-Gallardo, A.M. Ayala, M. Pal, M.A. Cortes Jacome, J.A. Toledo Antonio, and N.R. Mathews, Synthesis of Pyrite FeS2 Nanorods by Simple Hydrothermal Method and Its Photocatalytic Activity, Chem. Phys. Lett., 2016, 660, p 93–98
Metadata
Title
Reduction and Immobilization of Chromate Using Nanometric Pyrite
Authors
Amelia Bergeson
Travis Reed
Allen W. Apblett
Publication date
27-04-2020
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 9/2020
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-04801-1

Other articles of this Issue 9/2020

Journal of Materials Engineering and Performance 9/2020 Go to the issue

Premium Partners