Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2018

Open Access 01-12-2018 | Research

Refining trigonometric inequalities by using Padé approximant

Authors: Zhen Zhang, Huaqing Shan, Ligeng Chen

Published in: Journal of Inequalities and Applications | Issue 1/2018

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A two-point Padé approximant method is presented for refining some remarkable trigonometric inequalities including the Jordan inequality, Kober inequality, Becker–Stark inequality, and Wu–Srivastava inequality. Simple proofs are provided. It shows to achieve better approximation results than those of prevailing methods.
Notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

Trigonometric inequalities have caused interest of a lot of researchers, they analyzed the Wilker inequality [611, 14, 1619], Jordan inequality [3, 5, 15, 20, 21], Shafer–Fink inequality [12], Becker–Stark inequalities [13], and so on.
Recently, Bercu provided a Padé-approximant-based method and obtained the following inequalities [2].
$$\begin{aligned} &b_{1}(x)= \frac{-7 x^{2} + 60}{3 x^{2} + 60} < \frac{\sin(x)}{x} < \frac{11 x^{4} - 360 x^{2}+ 2520}{60 x^{2}+ 2520}= b_{2}(x),\quad \forall x \in (0,\pi/2); \end{aligned}$$
(1)
$$\begin{aligned} & \begin{aligned}[b] b_{3}(x) &=\frac{17x^{4} - 480x^{2}+ 1080}{2x^{4}+ 60x^{2}+ 1080} < \cos(x) < \frac{3x^{4} - 56x^{2}+ 120}{4x^{2}+ 120} \\ &= b_{4}(x),\quad \forall x \in (0,\pi/2); \end{aligned} \end{aligned}$$
(2)
$$\begin{aligned} & b_{5}(x) < \frac{\tan(x)}{x}< b_{6}(x),\quad \forall x \in (0,1.5701); \end{aligned}$$
(3)
$$\begin{aligned} & \biggl(\frac{x}{\sin(x)}\biggr)^{2}+\frac{x}{\tan(x)} > b_{7}(x),\quad \forall x \in (0,1.5701), \end{aligned}$$
(4)
where \(b_{5}(x)=\frac{-28x^{4} - 600x^{2}+ 7200}{9x^{6}+ 12x^{4} - 3000x^{2}+ 7200}\), \(b_{6}(x)=\frac{22x^{8} - 60x^{6} - 4680x^{4}- 237\mbox{,}600x^{2}+ 2\mbox{,}721\mbox{,}600}{1020x^{6}+ 14\mbox{,}040x^{4}- 1\mbox{,}144\mbox{,}800x^{2}+ 2\mbox{,}721\mbox{,}600}\) and \(b_{7}(x)=\frac{11\mbox{,}220x^{10}-205\mbox{,}560x^{8}-14\mbox{,}256\mbox{,}000x^{6}+512\mbox{,}179\mbox{,}200x^{4}- 3\mbox{,}157\mbox{,}056\mbox{,}000x^{2}+13\mbox{,}716\mbox{,}864\mbox{,}000}{242x^{12}-8580x^{10} +25\mbox{,}560x^{8}-1\mbox{,}080\mbox{,}000x^{6}+103\mbox{,}680\mbox{,}000x^{4}-1\mbox{,}578\mbox{,}528\mbox{,}000x^{2}+6\mbox{,}858\mbox{,}432\mbox{,}000}\).
In this paper, we present a two-point Padé-approximant-based method [1] for refining the rational bounds of several trigonometric inequalities, and also provide a method for proving the refined bounds. By applying the new method to \(\frac{\sin (x)}{x}\) and \(\cos(x)\), we refine the bounds of Eq. (1) ∼ (2), for \(\forall x \in [0,\pi/2]\), see also Theorems 3.1 and 3.2. Applied to \(\frac{\tan (x)}{x}\) and \((\frac{x}{\sin(x)})^{2}+\frac{x}{\tan(x)}\), it not only provides refined two-sided bounds with better approximation effect for Eq. (3) ∼ (4), but also extends the interval \((0,1.5701)\) to the interval \([0,\pi/2]\), see also the theorems and remarks in Sect. 3.

2 Find bounds by using two-point Padé approximant

Given a bounded smooth function \(f(x)\), \(x \in [x_{0}, x_{1}]\), let \(R(x)=\frac{\sum^{n}_{i=0} c_{i} x^{i}}{1+\sum^{m}_{i=1} d_{i} x^{i}}\) be a rational polynomial interpolating derivatives of \(f(x)\) at two points \(x_{0}\) and \(x_{1}\) such that
$$ E^{(i)}(x_{0})=0, \qquad E^{(j)}(x_{1})=0,\quad i=0,1, \ldots,k, j=0,1,\ldots,l, $$
(5)
where \(E(x)=(1+\sum^{m}_{i=1}d_{i} x^{i}) \cdot f(x) -(\sum^{n}_{i=1}c_{i} x^{i})\). There are \(m+n+2\) unknowns in Eq. (5). By selecting suitable values of k and l, we have that Eq. (5) consists of \(m+n+2\) linear equations in the unknown variables \(c_{i}\) and \(d_{j}\), and the interpolation polynomial \(R(x)\) can be determined by solving Eq. (5).
We give two examples. Without loss of generality, let \(\Gamma=[0,\pi/2]\).
Example 1
Let \(f_{1}(x)=\sin(x)\). By setting \(n_{1}=13\), \(m_{1}=0\), \(n_{2}=11\), and \(m_{2}=0\) and introducing the following constraints
$$ f_{1}^{(i)}(0)=R_{j}^{(i)}(0),\qquad f_{1}(\pi/2)=R_{j}(\pi/2),\quad j=1,2, i=0,1,\ldots,14-2j, $$
(6)
we obtain that
$$ R_{1}(x)= \beta_{1}(x)+ \alpha_{1} \cdot x^{13}, \qquad R_{2}(x)= \beta_{2}(x)- \alpha_{2} \cdot x^{11}, $$
(7)
where \(\alpha_{1}=\frac{\pi^{11}-440 \pi^{9}+126\mbox{,}720 \pi^{7}-21\mbox{,}288\mbox{,}960 \pi^{5}+1\mbox{,}703\mbox{,}116\mbox{,}800 \pi^{3}-40\mbox{,}874\mbox{,}803\mbox{,}200 \pi+81\mbox{,}749\mbox{,}606\mbox{,}400}{9\mbox{,}979\mbox{,}200 \pi^{13}}\), \(\beta_{1}(x)=t-\frac{t^{3}}{6}+ \frac{t^{5}}{120} - \frac{t^{7}}{5040} + \frac{t^{9}}{362\mbox{,}880}-\frac{x^{11}}{39\mbox{,}916\mbox{,}800}\), \(\alpha_{2}=\frac{\pi^{9}-288 \pi^{7}+48\mbox{,}384 \pi^{5}-3\mbox{,}870\mbox{,}720 \pi^{3} +92\mbox{,}897\mbox{,}280 \pi-185\mbox{,}794\mbox{,}560}{90\mbox{,}720 \pi^{11}} \), \(\beta_{2}(x)=t-\frac{t^{3}}{6}+ \frac{t^{5}}{120} - \frac{t^{7}}{5040} + \frac{t^{9}}{362\mbox{,}880}\). It can be verified that \(R_{j}(x) \geq 0, \forall x \in \Gamma, j=1,2\). From Eq. (6), \(\forall x \in \Gamma\), there exists \(\xi_{j}(x) \in \Gamma\) such that [4]
$$ f_{1}(x) - R_{j}(x) = \frac{f_{1}^{(16-2j)}(\xi_{j}(x))}{(16-2j)!} \cdot (x-\pi/2) \cdot x^{15-2j}, \quad x \in \Gamma, j=1,2. $$
(8)
Note that \(f_{1}^{(14)}(x) = -\sin(x) \leq 0\) and \(f_{1}^{(12)}(x) = \sin(x) \geq 0\), \(\forall x \in \Gamma\). Combining with Eq. (8), one obtains that
$$ 0 \leq R_{1}(x) \leq \sin(x) \leq R_{2}(x), \quad x \in \Gamma. $$
(9)
Example 2
Let \(f_{2}(x)=\cos(x)\). By setting \(n_{3}=12\), \(m_{3}=0\), \(n_{4}=10\), and \(m_{4}=0\) and introducing the following constraints
$$ f_{2}^{(i)}(0)=R_{j}^{(i)}(0),\qquad f_{2}(\pi/2)=R_{j}(\pi/2),\quad j=3,4, i=0,1,\ldots,17-2j, $$
(10)
we obtain that
$$ R_{3}(x)= \beta_{3}(x)+ \alpha_{3} \cdot x^{12} , \qquad R_{4}(x)= \beta_{4}(x)- \alpha_{4} \cdot x^{10}, $$
(11)
where \(\alpha_{3}=\frac{\pi^{10}-360 \pi^{8}+80\mbox{,}640 \pi^{6}-9\mbox{,}676\mbox{,}800 \pi^{4}+464\mbox{,}486\mbox{,}400 \pi^{2}-3\mbox{,}715\mbox{,}891\mbox{,}200}{907\mbox{,}200 \pi^{12}}\), \(\beta_{3}(x)=1-\frac{x^{2}}{2} +\frac{x^{4}}{24} -\frac{x^{6}}{720} +\frac{x^{8}}{40\mbox{,}320} -\frac{x^{10}}{3\mbox{,}628\mbox{,}800}\), \(\alpha_{4}=\frac{10\mbox{,}321\mbox{,}920-1\mbox{,}290\mbox{,}240 \pi^{2}+26\mbox{,}880 \pi^{4}-224 \pi^{6}+\pi^{8}}{10\mbox{,}080 \pi^{10}} \), \(\beta_{4}(x)=1-\frac{x^{2}}{2} +\frac{x^{4}}{24} -\frac{x^{6}}{720} +\frac{x^{8}}{40\mbox{,}320} \). It can be verified that \(R_{j}(x) \geq 0, \forall x \in \Gamma, j=3,4\). From Eq. (10), \(\forall x \in \Gamma\), there exists \(\xi_{j}(x) \in \Gamma, j=3,4\), such that [4]
$$ f_{2}(x) - R_{j}(x) = \frac{f_{2}^{(19-2j)}(\xi_{j}(x))}{(19-2j)!} \cdot (x-\pi/2) \cdot x^{18-2j}, \quad x \in \Gamma, j=3,4. $$
(12)
Note that \(f_{2}^{(13)}(x) = -\sin(x) \leq 0\) and \(f_{2}^{(11)}(x) = \sin(x) \geq 0\), \(\forall x \in \Gamma\). Combining with Eq. (12), one obtains that
$$ 0 \leq R_{3}(x) \leq \cos(x) \leq R_{4}(x), \quad x \in \Gamma. $$
(13)

3 Main results

The main results are as follows.
Theorem 3.1
For all \(\forall x \in \Gamma=[0,\pi/2]\), we have that
$$\begin{aligned}{} [b] c_{1}(x) &= \frac{60\mbox{,}480-9240 x^{2}+364 x^{4}-5 x^{6} }{840 (72+x^{2})} \leq \frac{\sin(x)}{x} \\ &\leq \frac{ (166\mbox{,}320-22\mbox{,}260 x^{2}+551 x^{4}) }{15 (11\mbox{,}088+364 x^{2}+5 x^{4})} =c_{2}(x). \end{aligned}$$
(14)
Proof
Eq. (14) is equivalent to
$$ \textstyle\begin{cases} (60\mbox{,}480-9240 x^{2}+364 x^{4}-5 x^{6}) x - 840 (72+x^{2}) \sin(x) \leq 0, \\ (166\mbox{,}320-22\mbox{,}260 x^{2}+551 x^{4}) x - 15 (11\mbox{,}088+364 x^{2}+5 x^{4}) \sin(x) \geq 0, \end{cases}\displaystyle \forall x \in \Gamma. $$
(15)
It is well known that \(\forall x \in \Gamma\),
$$\begin{aligned} \beta_{1}(x)&=t-\frac{t^{3}}{6}+ \frac{t^{5}}{120} - \frac{t^{7}}{5040} + \frac{t^{9}}{362\mbox{,}880}-\frac{x^{11}}{39\mbox{,}916\mbox{,}800} \\ &\leq \sin(x) \leq \beta_{1}(x) + \frac{x^{13}}{6\mbox{,}227\mbox{,}020\mbox{,}800}. \end{aligned}$$
(16)
Combining with Eq. (16), we have that
$$\begin{aligned} &\bigl(60\mbox{,}480-9240 x^{2}+364 x^{4}-5 x^{6}\bigr) x - 840 \bigl(72+x^{2}\bigr) \sin(x) \\ &\quad \leq \bigl(60\mbox{,}480-9240 x^{2}+364 x^{4}-5 x^{6}\bigr) x - 840 \bigl(72+x^{2}\bigr) \beta_{1}(x) \\ &\quad =\frac{x^{11} \cdot (-38+x^{2})}{39\mbox{,}916\mbox{,}800} \leq 0, \quad \forall x \in \Gamma, \\ & \bigl(166\mbox{,}320-22\mbox{,}260 x^{2}+551 x^{4}\bigr) x - 15 \bigl(11\mbox{,}088+364 x^{2}+5 x^{4}\bigr) \sin(x) \\ &\quad \geq \bigl(166\mbox{,}320-22\mbox{,}260 x^{2}+551 x^{4}\bigr) x\\ &\qquad {} - 15 \bigl(11\mbox{,}088+364 x^{2}+5 x^{4}\bigr) \biggl( \beta_{1}(x) + \frac{x^{13}}{6\mbox{,}227\mbox{,}020\mbox{,}800}\biggr) \\ &\quad = \frac{x^{11}}{6\mbox{,}227\mbox{,}020\mbox{,}800} \bigl(1\mbox{,}661\mbox{,}088-40\mbox{,}104 x^{2}+ 416 x^{4}- 5 x^{6}\bigr) \\ &\quad \geq \frac{x^{11}}{6\mbox{,}227\mbox{,}020\mbox{,}800} \bigl(1\mbox{,}661\mbox{,}088-40\mbox{,}104 \cdot 2^{2} - 5 \cdot 2^{6}\bigr) \geq 0,\quad \forall x \in \Gamma, \end{aligned}$$
which is just Eq. (15). So we have completed the proof of Eq. (14). □
Theorem 3.2
For all \(\forall x \in [0,\pi/2]\), we have that
$$ \begin{aligned}[b] c_{3}(x)&= \frac{ 20\mbox{,}160-9720 x^{2}+ 660 x^{4}-13 x^{6}}{360 (x^{2}+56)} \leq \cos(x) \\ & \leq \frac{15\mbox{,}120-6900 x^{2}+313 x^{4}}{15\mbox{,}120+660 x^{2}+13 x^{4}} =c_{4}(x). \end{aligned} $$
(17)
Proof
Eq. (17) is equivalent to
$$ \textstyle\begin{cases} (20\mbox{,}160-9720 x^{2}+ 660 x^{4}-13 x^{6})- 360 (x^{2}+56) \cos(x) \leq 0, \\ (15\mbox{,}120-6900 x^{2}+313 x^{4}) - (15\mbox{,}120+660 x^{2}+13 x^{4}) \cos(x) \geq 0, \end{cases}\displaystyle \forall x \in \Gamma. $$
(18)
It is well known that
$$ \begin{aligned}[b] \beta_{3}(x)&=1-\frac{x^{2}}{2} + \frac{x^{4}}{24} -\frac{x^{6}}{720} +\frac{x^{8}}{40\mbox{,}320} -\frac{x^{10}}{3\mbox{,}628\mbox{,}800} \leq \cos(x) \\ & \leq 1-\frac{x^{2}}{2} +\frac{x^{4}}{24} -\frac{x^{6}}{720} + \frac{x^{8}}{40\mbox{,}320} = \beta_{4}(x), \quad \forall x \in \Gamma. \end{aligned} $$
(19)
Combining with Eq. (19), we have that
$$ \textstyle\begin{cases} (20\mbox{,}160-9720 x^{2}+ 660 x^{4}-13 x^{6})- 360 (x^{2}+56) \cos(x) \\ \quad \leq (20\mbox{,}160-9720 x^{2}+ 660 x^{4}-13 x^{6})- 360 (x^{2}+56) \beta_{3}(x) \\ \quad = \frac{x^{10}}{3\mbox{,}628\mbox{,}800} (-34+x^{2}) \leq 0, \quad \forall x \in [0,\pi/2], \\ (15\mbox{,}120-6900 x^{2}+313 x^{4}) - (15\mbox{,}120+660 x^{2}+13 x^{4}) \cos(x) \\ \quad \geq (15\mbox{,}120-6900 x^{2}+313 x^{4}) - (15\mbox{,}120+660 x^{2}+13 x^{4}) \beta_{4}(x) \\ \quad =\frac{x^{10}}{40\mbox{,}320} (68 -13 x^{2}) \geq 0, \quad \forall x \in [0,\pi/2]. \end{cases} $$
(20)
Thus, we have completed the proof of both Eq. (18) and Eq. (17). □
Theorem 3.3
For all \(\forall x \in \Gamma\), we have that
$$ \begin{aligned}[b] c_{5}(x)&= \frac{ 21(495-60 x^{2}+x^{4})}{10\mbox{,}395-4725 x^{2}+210 x^{4}-x^{6}} \leq \frac{\tan(x)}{x} \\ &\leq \frac{T_{1}(x)}{105 (\pi^{2}-4 x^{2}) \cdot T_{2}(x)} =c_{6}(x), \end{aligned} $$
(21)
where \(T_{1}(x)=(\pi^{6}-840 \pi^{4}+75\mbox{,}600 \pi^{2}-665\mbox{,}280) x^{6} + (210 \pi^{6}+52\mbox{,}920 \pi^{4}-7\mbox{,}620\mbox{,}480 \pi^{2}+69\mbox{,}854\mbox{,}400) x^{4} + (-17\mbox{,}955 \pi^{6}+1\mbox{,}323\mbox{,}000 \pi^{4}+52\mbox{,}390\mbox{,}800 \pi^{2}-628\mbox{,}689\mbox{,}600) x^{2} + (155\mbox{,}925 (\pi^{4}-112 \pi^{2}+1008)) \pi^{2}\) and \(T_{2}(x) = (26 \pi^{4}-2664 \pi^{2}+23\mbox{,}760) x^{4} + (-666 \pi^{4}+73\mbox{,}980 \pi^{2}-665\mbox{,}280) x^{2} + (1485 \pi^{4}-166\mbox{,}320 \pi^{2}+1\mbox{,}496\mbox{,}880)\).
Proof
Eq. (21) is equivalent to
$$ \textstyle\begin{cases} \begin{aligned} H_{5}(x) ={}& 21(495-60 x^{2}+x^{4}) \cdot x \cos(x) \\ &{} - (10\mbox{,}395-4725 x^{2}+210 x^{4}-x^{6}) \cdot \sin(x) \leq 0; \end{aligned} \\ H_{6}(x) =105 (\pi^{2}-4 x^{2}) \cdot T_{2}(x) \cdot \sin(x) -T_{1}(x) \cdot x \cos(x) \leq 0, \end{cases}\displaystyle \forall x \in \Gamma. $$
(22)
It can be verified that
$$ \textstyle\begin{cases} \cos(x) \leq 1-\frac{x^{2}}{2} +\frac{x^{4}}{24} -\frac{x^{6}}{720} +\frac{x^{8}}{40\mbox{,}320} -\frac{x^{10}}{3\mbox{,}628\mbox{,}800} + \frac{x^{12}}{479\mbox{,}001\mbox{,}600}= \beta_{5}(x), \\ \beta_{1}(x)=t-\frac{t^{3}}{6}+ \frac{t^{5}}{120} - \frac{t^{7}}{5040} + \frac{t^{9}}{362\mbox{,}880}-\frac{x^{11}}{39\mbox{,}916\mbox{,}800} \leq \sin(x), \\ 495-60 x^{2}+x^{4}>0,\qquad 10\mbox{,}395-4725 x^{2}+210 x^{4}-x^{6}>0, \end{cases}\displaystyle \forall x \in \Gamma. $$
(23)
Combining with Eq. (23), we have that
$$ \begin{aligned}[b] H_{5}(x) &\leq 21\bigl(495-60 x^{2}+x^{4} \bigr) \cdot x \beta_{5}(x) - \bigl(10\mbox{,}395-4725 x^{2}+210 x^{4}-x^{6}\bigr) \cdot \beta_{1}(x) \\ &=\frac{x^{13}}{159\mbox{,}667\mbox{,}200} \bigl(-915-64 x^{2}+3 x^{4}\bigr) \leq 0, \quad \forall x \in \Gamma. \end{aligned} $$
(24)
Let \(\beta_{6}(x)=T_{1}(x)+105 (\pi^{2}-4 x^{2}) \cdot T_{2}'(x) -840 x \cdot T_{2}(x)\), \(\beta_{7}(x)=105 (\pi^{2}-4 x^{2}) \cdot T_{2}(x)-T_{1}'(x)\). On the other hand, it can be verified that, \(\forall x \in \Gamma\),
$$ \begin{aligned} &H_{6}'(x)= \beta_{6}(x) \cdot \sin(x) + \beta_{7}(x) \cdot \cos(x), \\ &\beta_{6}(x) \leq 0,\qquad \beta_{7}(x) \geq 0,\qquad T_{2}(x) \geq 0,\qquad T_{1}(x) \geq 0, \\ & \begin{aligned} \cos(x) \geq{}& 1-\frac{x^{2}}{2} +\frac{x^{4}}{24} -\frac{x^{6}}{720} + \frac{x^{8}}{40\mbox{,}320} -\frac{x^{10}}{3\mbox{,}628\mbox{,}800} + \frac{x^{12}}{479\mbox{,}001\mbox{,}600} \\ &{}-\frac{x^{14}}{87\mbox{,}178\mbox{,}291\mbox{,}200}= \beta_{8}(x), \end{aligned}\\ &\beta_{9}(x)=t-\frac{t^{3}}{6}+ \frac{t^{5}}{120} - \frac{t^{7}}{5040} + \frac{t^{9}}{362\mbox{,}880}-\frac{x^{11}}{39\mbox{,}916\mbox{,}800}+\frac{x^{13}}{6\mbox{,}227\mbox{,}020\mbox{,}800}\geq \sin(x). \end{aligned} $$
(25)
Combining Eq. (23) with Eq. (25), we have that
$$ \begin{aligned} H_{6}(x) &\leq 105 \bigl(\pi^{2}-4 x^{2}\bigr) \cdot T_{2}(x) \cdot \beta_{9}(x) -T_{1}(x) \cdot x \beta_{8}(x) \\ &= \frac{x^{13}}{9\mbox{,}153\mbox{,}720\mbox{,}576\mbox{,}000} \beta_{10}(x) \leq 0, \quad \forall x \in \biggl[0,\frac{31 \pi}{64}\biggr], \\ H_{6}'(x) &\geq \beta_{6}(x) \cdot \beta_{1}(x) + \beta_{7}(x) \cdot \beta_{5}(x) \\ &= \frac{x^{12}}{50\mbox{,}295\mbox{,}168\mbox{,}000} \beta_{11}(x) \geq 0, \quad \forall x \in \biggl[\frac{31 \pi}{64},\frac{\pi}{2}\biggr], \end{aligned} $$
(26)
where \(\beta_{10}(x)=(18\mbox{,}063\mbox{,}360 \pi^{6}-8\mbox{,}128\mbox{,}512\mbox{,}000 \pi^{4}+ 643\mbox{,}778\mbox{,}150\mbox{,}400 \pi^{2}- 5\mbox{,}579\mbox{,}410\mbox{,}636\mbox{,}800)+( -634\mbox{,}725 \pi^{6}+305\mbox{,}912\mbox{,}880 \pi^{4}-24\mbox{,}700\mbox{,}198\mbox{,}320 \pi^{2}+ 214\mbox{,}592\mbox{,}716\mbox{,}800) x^{2} +(6069 \pi^{6}-4\mbox{,}639\mbox{,}320 \pi^{4}+411\mbox{,}823\mbox{,}440 \pi^{2}-3\mbox{,}618\mbox{,}457\mbox{,}920) x^{4} + (28 \pi^{6}+52\mbox{,}920 \pi^{4}-5\mbox{,}715\mbox{,}360 \pi^{2}+51\mbox{,}226\mbox{,}560) x^{6} + (\pi^{6}-840 \pi^{4}+75\mbox{,}600 \pi^{2}-665\mbox{,}280) x^{8} \leq 0, \forall x \in [0,\frac{31 \pi}{64}]\), \(\beta_{11}(x)=(-1\mbox{,}290\mbox{,}240 \pi^{6}+580\mbox{,}608\mbox{,}000 \pi^{4}-45\mbox{,}984\mbox{,}153\mbox{,}600 \pi^{2}+ 398\mbox{,}529\mbox{,}331\mbox{,}200)+ (54\mbox{,}405 \pi^{6}-25\mbox{,}552\mbox{,}800 \pi^{4}+2\mbox{,}048\mbox{,}684\mbox{,}400 \pi^{2}- 17\mbox{,}782\mbox{,}934\mbox{,}400) x^{2}+ ( -1404 \pi^{6}+556\mbox{,}920 \pi^{4}-42\mbox{,}366\mbox{,}240 \pi^{2}+365\mbox{,}238\mbox{,}720) x^{4}+ ( 19 \pi^{6}-5040 \pi^{4}+317\mbox{,}520 \pi^{2}-2\mbox{,}661\mbox{,}120) x^{6}\geq 0, \forall x \in [\frac{31 \pi}{64},\frac{\pi}{2}]\). Combining Eq. (26) with \(H_{6}(\pi/2)=0\), we obtain that
$$ H_{6}(x) \leq 0,\quad \forall x \in \biggl[0,\frac{\pi}{2} \biggr]. $$
(27)
Combining Eq. (24) with Eq. (27), we have completed the proof of both Eq. (22) and Eq. (21). □
From Theorems 3.1, 3.2, and 3.3, we directly obtain the following theorem.
Theorem 3.4
We have that
$$\frac{1}{c_{2}(x)^{2}} + \frac{1}{c_{6}(x)} \leq \biggl(\frac{x}{\sin(x)} \biggr)^{2} + \frac{x}{\tan(x)} \leq \frac{1}{c_{1}(x)^{2}} + \frac{1}{c_{5}(x)},\quad \forall x \in [0,\pi/2]. $$

4 Discussion and conclusions

Firstly, we compare the results of \(\frac{\sin(x)}{x}\) between \(b_{i}(x)\) in [2] and \(c_{i}(x)\) in this paper, \(i=1,2\). It can be verified that \(c_{1}(x)-b_{1}(x)=\frac{x^{6} (264-5x^{2})}{840(72+x^{2})(x^{2}+20)} \geq 0\) and \(c_{2}(x)-b_{2}(x)=\frac{ -11 x^{8}}{12(11\mbox{,}088+364 x^{2}+5 x^{4})(x^{2}+42)} \leq 0\), \(\forall x \in [0,\pi/2]\), we have that
$$b_{1}(x) \leq c_{1}(x) \leq \frac{\sin(x)}{x} \leq c_{2}(x) \leq b_{2}(x), \quad \forall x \in [0,\pi/2]. $$
Secondly, we compare the approximation results of \(\cos(x)\) between previous \(b_{i}(x)\) and present \(c_{i}(x)\), \(i=3,4\). It can be verified that \(c_{3}(x)-b_{3}(x)=\frac{x^{8}(270-13 x^{2})}{360 (56+x^{2})(x^{4}+30 x^{2}+540)} \geq 0\) and \(c_{2}(x)-b_{2}(x)=\frac{ -39 x^{8}}{4 (15\mbox{,}120+660 x^{2}+13 x^{4})(x^{2}+30)} \leq 0\), \(\forall x \in [0,\pi/2]\), we have that
$$b_{3}(x) \leq c_{3}(x) \leq \cos(x) \leq c_{4}(x) \leq b_{4}(x), \quad \forall x \in [0,\pi/2]. $$
Thirdly, we compare the approximation results of \(\frac{\tan(x)}{x}\), which also shows that this paper achieves a much better result. It can be verified that \(\forall x \in [0,\pi/2]\),
$$c_{5}(x)-b_{5}(x)=\frac{x^{6}(161 x^{2}-495) (x^{2}-33)}{3(10\mbox{,}395-4725 x^{2}+210 x^{4}-x^{6}) (x^{2}+20) (3 x^{4}-56 x^{2}+120)} \geq 0. $$
However, note that the denominator of \(b_{6}(x)\) is \(T_{3}(x) = 1020x^{6}+ 14\mbox{,}040x^{4}- 1\mbox{,}144\mbox{,}800x^{2}+ 2\mbox{,}721\mbox{,}600 = 30(17 x^{4}-480 x^{2}+1080)(x^{2}+42)\), which has a real root ≈1.5701 within the interval Γ, and we have \(T_{3}(x) >0, \forall x \in [0,1.5701]\). It can be verified that \(c_{6}(x) - b_{6}(x)= \frac{-x^{8} H_{7}(x)}{210 T_{2}(x) T_{3}(x) (\pi^{2}-4 x^{2})}\), where \(H_{7}(x)=378\mbox{,}675 (\pi^{4}-112 \pi^{2}+1008) \pi^{2} + (-64\mbox{,}350 \pi^{6}+5\mbox{,}536\mbox{,}440 \pi^{4}+106\mbox{,}323\mbox{,}840 \pi^{2}-1\mbox{,}526\mbox{,}817\mbox{,}600)x^{2} + (1968 \pi^{6}+50\mbox{,}400 \pi^{4}-25\mbox{,}764\mbox{,}480 \pi^{2}+ 247\mbox{,}484\mbox{,}160) x^{4} + (-8008 \pi^{4}+820\mbox{,}512 \pi^{2}-7\mbox{,}318\mbox{,}080)x^{6}\). By using the Maple software, \(H_{7}(x)\) has six real roots \(\approx -9.16,-4.97 ,-2.76, 2.76, 4.97, 9.16\), and \(H_{7}(x), T_{2}(x), T_{3}(x)> 0, \forall x \in (0,1.5701)\), we have that
$$c_{6}(x) - b_{6}(x) \leq 0,\quad \forall x \in [0,1.5701]. $$

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
1.
go back to reference Baker, G.A. Jr., Graves-Morris, P.: Padé Approximants. Cambridge University Press, New York (1996) CrossRefMATH Baker, G.A. Jr., Graves-Morris, P.: Padé Approximants. Cambridge University Press, New York (1996) CrossRefMATH
2.
3.
go back to reference Chen, C.P., Debnath, L.: Sharpness and generalization of Jordan’s inequality and its application. Appl. Math. Lett. 25(3), 594–599 (2012) MathSciNetCrossRefMATH Chen, C.P., Debnath, L.: Sharpness and generalization of Jordan’s inequality and its application. Appl. Math. Lett. 25(3), 594–599 (2012) MathSciNetCrossRefMATH
4.
go back to reference Davis, P.J.: Interpolation and Approximation. Dover Publications, New York (1975) MATH Davis, P.J.: Interpolation and Approximation. Dover Publications, New York (1975) MATH
5.
go back to reference Debnath, L., Mortici, C., Zhu, L.: Refinements of Jordan–Steckin and Becker–Stark inequalities. Results Math. 67(1–2), 207–215 (2015) MathSciNetCrossRefMATH Debnath, L., Mortici, C., Zhu, L.: Refinements of Jordan–Steckin and Becker–Stark inequalities. Results Math. 67(1–2), 207–215 (2015) MathSciNetCrossRefMATH
6.
go back to reference Jiang, W.D., Luo, Q.M., Qi, F.: Refinements and sharpening of some Huygens and Wilker type inequalities. Math. Inequal. Appl. 6(1), 19–22 (2014) Jiang, W.D., Luo, Q.M., Qi, F.: Refinements and sharpening of some Huygens and Wilker type inequalities. Math. Inequal. Appl. 6(1), 19–22 (2014)
7.
go back to reference Lutovac, T., Malešsević, B., Mortici, C.: The natural algorithmic approach of mixed trigonometric-polynomial problems. J. Inequal. Appl. 2017, 116 (2017) MathSciNetCrossRefMATH Lutovac, T., Malešsević, B., Mortici, C.: The natural algorithmic approach of mixed trigonometric-polynomial problems. J. Inequal. Appl. 2017, 116 (2017) MathSciNetCrossRefMATH
8.
go back to reference Malešević, B., Makragic, M.: A method for proving some inequalities on mixed trigonometric polynomial functions. J. Math. Inequal. 10, 849–876 (2015) MathSciNetMATH Malešević, B., Makragic, M.: A method for proving some inequalities on mixed trigonometric polynomial functions. J. Math. Inequal. 10, 849–876 (2015) MathSciNetMATH
9.
go back to reference Mortici, C.: The natural approach of Wilker–Cusa–Huygens inequalities. Math. Inequal. Appl. 14, 535–541 (2011) MathSciNetMATH Mortici, C.: The natural approach of Wilker–Cusa–Huygens inequalities. Math. Inequal. Appl. 14, 535–541 (2011) MathSciNetMATH
10.
11.
go back to reference Nenezić, M., Malesević, B., Mortici, C.: New approximations of some expressions involving trigonometric functions. Appl. Math. Comput. 283, 299–315 (2016) MathSciNet Nenezić, M., Malesević, B., Mortici, C.: New approximations of some expressions involving trigonometric functions. Appl. Math. Comput. 283, 299–315 (2016) MathSciNet
12.
go back to reference Nishizawa, Y.: Sharpening of Jordan’s type and Shafer–Fink’s type inequalities with exponential approximations. Appl. Math. Comput. 269, 146–154 (2015) MathSciNet Nishizawa, Y.: Sharpening of Jordan’s type and Shafer–Fink’s type inequalities with exponential approximations. Appl. Math. Comput. 269, 146–154 (2015) MathSciNet
13.
go back to reference Sun, Z.J., Zhu, L.: Simple proofs of the Cusa–Huygens-type and Becker–Stark-type inequalities. J. Math. Inequal. 7(4), 563–567 (2013) MathSciNetCrossRefMATH Sun, Z.J., Zhu, L.: Simple proofs of the Cusa–Huygens-type and Becker–Stark-type inequalities. J. Math. Inequal. 7(4), 563–567 (2013) MathSciNetCrossRefMATH
14.
go back to reference Wilker, N.E.: Huygens-type inequalities for the generalized trigonometric and for the generalized hyperbolic functions. Appl. Math. Comput. 230(3), 211–217 (2014) MathSciNet Wilker, N.E.: Huygens-type inequalities for the generalized trigonometric and for the generalized hyperbolic functions. Appl. Math. Comput. 230(3), 211–217 (2014) MathSciNet
15.
go back to reference Wu, S., Debnath, L.: A new generalized and sharp version of Jordan’s inequality and its applications to the improvement of the Yang Le inequality. Appl. Math. Lett. 20(5), 532–538 (2007) MathSciNetCrossRefMATH Wu, S., Debnath, L.: A new generalized and sharp version of Jordan’s inequality and its applications to the improvement of the Yang Le inequality. Appl. Math. Lett. 20(5), 532–538 (2007) MathSciNetCrossRefMATH
16.
go back to reference Wu, S.-H., Srivastava, H.M.: A weighted and exponential generalization of Wilker’s inequality and its applications. Integral Transforms Spec. Funct. 18(7–8), 529–535 (2007) MathSciNetCrossRefMATH Wu, S.-H., Srivastava, H.M.: A weighted and exponential generalization of Wilker’s inequality and its applications. Integral Transforms Spec. Funct. 18(7–8), 529–535 (2007) MathSciNetCrossRefMATH
17.
go back to reference Wu, S.H., Li, S.G., Bencze, M.: Sharpened versions of Mitrinovic–Adamovic, Lazarevic and Wilker’s inequalities for trigonometric and hyperbolic functions. J. Nonlinear Sci. Appl. 9(5), 2688–2696 (2016) MathSciNetCrossRefMATH Wu, S.H., Li, S.G., Bencze, M.: Sharpened versions of Mitrinovic–Adamovic, Lazarevic and Wilker’s inequalities for trigonometric and hyperbolic functions. J. Nonlinear Sci. Appl. 9(5), 2688–2696 (2016) MathSciNetCrossRefMATH
18.
go back to reference Wu, S.H., Yu, H.P., Deng, Y.P., et al.: Several improvements of Mitrinovic–Adamovic and Lazarevic’s inequalities with applications to the sharpening of Wilker-type inequalities. J. Nonlinear Sci. Appl. 9(4), 1755–1765 (2016) MathSciNetCrossRefMATH Wu, S.H., Yu, H.P., Deng, Y.P., et al.: Several improvements of Mitrinovic–Adamovic and Lazarevic’s inequalities with applications to the sharpening of Wilker-type inequalities. J. Nonlinear Sci. Appl. 9(4), 1755–1765 (2016) MathSciNetCrossRefMATH
19.
go back to reference Yang, Z.H., Chu, Y.M., Zhang, X.H.: Sharp Cusa type inequalities with two parameters and their applications. Appl. Math. Comput. 268, 1177–1198 (2015) MathSciNet Yang, Z.H., Chu, Y.M., Zhang, X.H.: Sharp Cusa type inequalities with two parameters and their applications. Appl. Math. Comput. 268, 1177–1198 (2015) MathSciNet
Metadata
Title
Refining trigonometric inequalities by using Padé approximant
Authors
Zhen Zhang
Huaqing Shan
Ligeng Chen
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2018
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-018-1742-7

Other articles of this Issue 1/2018

Journal of Inequalities and Applications 1/2018 Go to the issue

Premium Partner