Skip to main content
Top
Published in: Neural Computing and Applications 1/2017

06-06-2016 | Original Article

Regularization feature selection projection twin support vector machine via exterior penalty

Authors: Ping Yi, Aiguo Song, Jianhui Guo, Ruili Wang

Published in: Neural Computing and Applications | Special Issue 1/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the past years, non-parallel plane classifiers that seek projection direction instead of hyperplane for each class have attracted much attention, such as the multi-weight vector projection support vector machine (MVSVM) and the projection twin support vector machine (PTSVM). Instead of solving two generalized eigenvalue problems in MVSVM, PTSVM solves two related SVM-type problems to obtain the two projection directions by solving two smaller quadratic programming problems, similar to twin support vector machine. In order to suppress input space features, we propose a novel non-parallel classifier to automatically select significant features, called regularization feature selection projection twin support vector machine (RFSPTSVM). In contrast to the PTSVM, we first incorporate a regularization term to ensure the optimization problems are convex, and then replace all the terms with L1-norm ones. By minimizing an exterior penalty function of the linear programming problem and using a fast generalized Newton algorithm, our RFSPTSVM obtains very sparse solutions. For nonlinear case, the method utilizes minimal number of kernel functions. The experimental results on toy datasets, Myeloma dataset, several UCI benchmark datasets, and NDCC generated datasets show the feasibility and effectiveness of the proposed method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Burges C (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:121–167CrossRef Burges C (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:121–167CrossRef
2.
go back to reference Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines: and other kernel-based learning methods. Cambridge University Press, CambridgeCrossRefMATH Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines: and other kernel-based learning methods. Cambridge University Press, CambridgeCrossRefMATH
3.
go back to reference Cortes C, Vapnik VN (1995) Support vector networks. Mach Learn 20:273–297MATH Cortes C, Vapnik VN (1995) Support vector networks. Mach Learn 20:273–297MATH
4.
go back to reference Demiriz A, Bennett KP, Breneman CM, Embrechts MJ (2001) Support vector machine regression in chemometrics. In: Computing science and statistics, proceedings of the 33rd symposium on the interface. American Statistical Association for the Interface Foundation of North America, Washington, DC Demiriz A, Bennett KP, Breneman CM, Embrechts MJ (2001) Support vector machine regression in chemometrics. In: Computing science and statistics, proceedings of the 33rd symposium on the interface. American Statistical Association for the Interface Foundation of North America, Washington, DC
5.
go back to reference Osuna E, Freund R, Girosi F (1997) Training support vector machines: an application to face detection. In: Proceedings of the 1997 IEEE Computer Society conference on computer vision pattern recognition, pp 130–136 Osuna E, Freund R, Girosi F (1997) Training support vector machines: an application to face detection. In: Proceedings of the 1997 IEEE Computer Society conference on computer vision pattern recognition, pp 130–136
6.
go back to reference Jia G, Martinez AM (2009) Support vector machines in face recognition with occlusions. In: Proceedings of the 2009 IEEE conference on comput vision and pattern recognition, Miami, Florida, pp 136–141 Jia G, Martinez AM (2009) Support vector machines in face recognition with occlusions. In: Proceedings of the 2009 IEEE conference on comput vision and pattern recognition, Miami, Florida, pp 136–141
7.
go back to reference Hotta Kazuhiro (2008) Robust face recognition under partial occlusion based on support vector machine with local Gaussian summation kernel. Image Vis Comput 26(11):1490–1498CrossRef Hotta Kazuhiro (2008) Robust face recognition under partial occlusion based on support vector machine with local Gaussian summation kernel. Image Vis Comput 26(11):1490–1498CrossRef
8.
go back to reference Wang Zhenyu, Yang Wankou, Ben Xianye (2015) Low-resolution degradation face recognition over long distance based on CCA. Neural Comput Appl 26(7):1645–1652CrossRef Wang Zhenyu, Yang Wankou, Ben Xianye (2015) Low-resolution degradation face recognition over long distance based on CCA. Neural Comput Appl 26(7):1645–1652CrossRef
9.
go back to reference Yang Wankou, Wang Zhenyu, Sun Changyin (2015) A collaborative representation based projections method for feature extraction. Pattern Recogn 48(1):20–27CrossRef Yang Wankou, Wang Zhenyu, Sun Changyin (2015) A collaborative representation based projections method for feature extraction. Pattern Recogn 48(1):20–27CrossRef
10.
go back to reference Joachims T (1998) Text categorization with support vector machines: learning with many relevant features. Machine Learning ECML-98:137–142 Joachims T (1998) Text categorization with support vector machines: learning with many relevant features. Machine Learning ECML-98:137–142
11.
go back to reference Cao L (2003) Support vector machines experts for time series forecasting. Neurocomputing 51:321–339CrossRef Cao L (2003) Support vector machines experts for time series forecasting. Neurocomputing 51:321–339CrossRef
12.
go back to reference Chen X, Yang J, Liang J, Ye Q (2012) Recursive robust least squares support vector regression based on maximum correntropy criterion. Neurocomputing 97:63–73CrossRef Chen X, Yang J, Liang J, Ye Q (2012) Recursive robust least squares support vector regression based on maximum correntropy criterion. Neurocomputing 97:63–73CrossRef
13.
go back to reference Zhao Y, Zhao J, Zhao M (2013) Twin least squares support vector regression. Neurocomputing 118:225–236CrossRef Zhao Y, Zhao J, Zhao M (2013) Twin least squares support vector regression. Neurocomputing 118:225–236CrossRef
14.
go back to reference Ben Xianye, Zhang Peng et al (2015) Gait recognition and micro-expression recognition based on maximum margin projection with tensor representation. Neural Comput Appl. doi:10.1007/s00521-015-2031-8 Ben Xianye, Zhang Peng et al (2015) Gait recognition and micro-expression recognition based on maximum margin projection with tensor representation. Neural Comput Appl. doi:10.​1007/​s00521-015-2031-8
15.
go back to reference Ben Xianye, Meng Weixiao et al (2013) Kernel coupled distance metric learning for gait recognition and face recognition. Neurocomputing 120:577–589CrossRef Ben Xianye, Meng Weixiao et al (2013) Kernel coupled distance metric learning for gait recognition and face recognition. Neurocomputing 120:577–589CrossRef
16.
go back to reference Du B, Zhang L (2015) Target detection based on a dynamic subspace. Pattern Recogn 47(1):344–358CrossRef Du B, Zhang L (2015) Target detection based on a dynamic subspace. Pattern Recogn 47(1):344–358CrossRef
17.
go back to reference Du B, Zhang L (2014) A discriminative metric learning based anomaly detection method. IEEE Trans Geosci Remote Sens 52(11):6844–6857CrossRef Du B, Zhang L (2014) A discriminative metric learning based anomaly detection method. IEEE Trans Geosci Remote Sens 52(11):6844–6857CrossRef
18.
go back to reference Fung G, Mangasarian OL (2001) Proximal support vector machine classifiers. In: Provost F, Srikant R (eds) Proceedings of the knowledge discovery and data mining, pp 77–86 Fung G, Mangasarian OL (2001) Proximal support vector machine classifiers. In: Provost F, Srikant R (eds) Proceedings of the knowledge discovery and data mining, pp 77–86
19.
go back to reference Mangasarian O, Wild E (2006) Multisurface proximal support vector classification via generalize eigenvalues. IEEE Trans Pattern Anal Mach Intell 28(1):69–74CrossRef Mangasarian O, Wild E (2006) Multisurface proximal support vector classification via generalize eigenvalues. IEEE Trans Pattern Anal Mach Intell 28(1):69–74CrossRef
20.
go back to reference Jayadeva R, Khemchandani S (2007) Chandra, twin support vector machines for pattern classification. IEEE Trans Pattern Anal Mach Intell 29:905–910CrossRefMATH Jayadeva R, Khemchandani S (2007) Chandra, twin support vector machines for pattern classification. IEEE Trans Pattern Anal Mach Intell 29:905–910CrossRefMATH
21.
go back to reference Arun Kumar M, Gopal M (2009) Least squares twin support vector machines for pattern classification. Expert Syst Appl 36:7535–7543CrossRef Arun Kumar M, Gopal M (2009) Least squares twin support vector machines for pattern classification. Expert Syst Appl 36:7535–7543CrossRef
22.
go back to reference Ye Q, Zhao C, Ye N, Chen Y (2010) Multi-weight vector projection support vector machines. Pattern Recogn Lett 31(13):2006–2011CrossRef Ye Q, Zhao C, Ye N, Chen Y (2010) Multi-weight vector projection support vector machines. Pattern Recogn Lett 31(13):2006–2011CrossRef
24.
go back to reference Shao Yuan-Hai, Wang Zhen, Chen Wei-Jie, Deng Nai-Yang (2013) A regularization for the projection twin support vector machine. Knowl Based Syst 37:203–210CrossRef Shao Yuan-Hai, Wang Zhen, Chen Wei-Jie, Deng Nai-Yang (2013) A regularization for the projection twin support vector machine. Knowl Based Syst 37:203–210CrossRef
25.
go back to reference Zhu J, Rosset S, Hastie T, Tibshirani R (2004) 1-norm support vector machines. In: Thrun S, Saul LK, Scholkopf BH (eds) Advances in neural information processing systems16–NIPS2003. MIT Press, Cambridge Zhu J, Rosset S, Hastie T, Tibshirani R (2004) 1-norm support vector machines. In: Thrun S, Saul LK, Scholkopf BH (eds) Advances in neural information processing systems16–NIPS2003. MIT Press, Cambridge
26.
go back to reference Golub T, Slonim D, Tamayo P, Huard C, Gaasenbeek M, Mesirov J, Coller H, Loh M, Downing J, Caligiuri M (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531–536CrossRef Golub T, Slonim D, Tamayo P, Huard C, Gaasenbeek M, Mesirov J, Coller H, Loh M, Downing J, Caligiuri M (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531–536CrossRef
27.
go back to reference Guyon I, Weston J, Barhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46:389–422CrossRefMATH Guyon I, Weston J, Barhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46:389–422CrossRefMATH
28.
go back to reference Zhou WD, Zhang L, Jiao LC (2002) Linear programming support vector machines. Pattern Recogn 35(12):2927–2936CrossRefMATH Zhou WD, Zhang L, Jiao LC (2002) Linear programming support vector machines. Pattern Recogn 35(12):2927–2936CrossRefMATH
29.
go back to reference Zou H (2007) An improved 1-norm SVM for simultaneous classification and variable selection. In: Proceedings of the eleventh international conference on artificial intelligence and statistics Zou H (2007) An improved 1-norm SVM for simultaneous classification and variable selection. In: Proceedings of the eleventh international conference on artificial intelligence and statistics
30.
go back to reference Fung G, Mangasarian OL (2004) A feature selection Newton method for support vector machine classification. Comput Optim Appl 28(2):185–202MathSciNetCrossRefMATH Fung G, Mangasarian OL (2004) A feature selection Newton method for support vector machine classification. Comput Optim Appl 28(2):185–202MathSciNetCrossRefMATH
31.
go back to reference Mangasarian OL (2006) Exact 1-norm support vector machines via unconstrained convex differentiable minimization. J Mach Learn Res 7:1517–1530MathSciNetMATH Mangasarian OL (2006) Exact 1-norm support vector machines via unconstrained convex differentiable minimization. J Mach Learn Res 7:1517–1530MathSciNetMATH
32.
go back to reference Gao Shangbing, Ye Q, Ye N (2011) 1-norm least squares twin support vector machines. Neurocomputing 74:3590–3597CrossRef Gao Shangbing, Ye Q, Ye N (2011) 1-norm least squares twin support vector machines. Neurocomputing 74:3590–3597CrossRef
33.
go back to reference Bai L, Wang Z, Shao YH et al (2014) A novel feature selection method for twin support vector machine. Knowl Based Syst 59:1–8CrossRef Bai L, Wang Z, Shao YH et al (2014) A novel feature selection method for twin support vector machine. Knowl Based Syst 59:1–8CrossRef
34.
go back to reference Ye Q, Zhao C, Ye N, Zheng H, Chen X (2012) A feature selection method for nonparallel plane support vector machine classification. Optim Methods Softw 27(3):431–443MathSciNetCrossRefMATH Ye Q, Zhao C, Ye N, Zheng H, Chen X (2012) A feature selection method for nonparallel plane support vector machine classification. Optim Methods Softw 27(3):431–443MathSciNetCrossRefMATH
35.
go back to reference Guo J et al (2014) Feature selection for least squares projection twin support vector machine. NeuroComputing 144:174–183CrossRef Guo J et al (2014) Feature selection for least squares projection twin support vector machine. NeuroComputing 144:174–183CrossRef
36.
go back to reference Tao Y, Yang J (2010) Quotient vs. difference: comparison between the two discriminant criteria. Neurocomputing 73:1808–1817CrossRef Tao Y, Yang J (2010) Quotient vs. difference: comparison between the two discriminant criteria. Neurocomputing 73:1808–1817CrossRef
40.
go back to reference Page D, Zhan F, Cussens J, Waddell M, Hardin J, Barlogie B, Shaughnessy J Jr (2002) Comparative data mining for microarrays: a case study based on Multiple Myeloma. Technical Report 1453, Computer Sciences Department, University of Wisconsin Page D, Zhan F, Cussens J, Waddell M, Hardin J, Barlogie B, Shaughnessy J Jr (2002) Comparative data mining for microarrays: a case study based on Multiple Myeloma. Technical Report 1453, Computer Sciences Department, University of Wisconsin
Metadata
Title
Regularization feature selection projection twin support vector machine via exterior penalty
Authors
Ping Yi
Aiguo Song
Jianhui Guo
Ruili Wang
Publication date
06-06-2016
Publisher
Springer London
Published in
Neural Computing and Applications / Issue Special Issue 1/2017
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2375-8

Other articles of this Special Issue 1/2017

Neural Computing and Applications 1/2017 Go to the issue

Premium Partner