Skip to main content
Top

2016 | OriginalPaper | Chapter

8. Regularized Image Interpolation Based on Data Fusion

Authors : Mongi A. Abidi, Andrei V. Gribok, Joonki Paik

Published in: Optimization Techniques in Computer Vision

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter presents an adaptive regularized image interpolation algorithm, which is developed in a general framework of data fusion, to enlarge noisy-blurred, low-resolution (LR) image sequences. Initially, the assumption is made that each LR image frame is obtained by subsampling the corresponding original high-resolution (HR) image frame. Then the mathematical model of the subsampling process is obtained. Given a sequence of LR image frames and the mathematical model of subsampling, the general regularized image interpolation estimates HR image frames by minimizing the residual between the given LR image frame and the subsampled estimated solution with appropriate smoothness constraints.
The proposed algorithm adopts spatial adaptivity which can preserve the high-frequency components along the edge orientation in a restored HR image frame. This multiframe image interpolation algorithm is composed of two levels of data fusion. At the first level, an LR image is obtained and used as an input of the adaptive regularized image interpolation. At the second level, the spatially adaptive, fusion-based regularized interpolation is implemented by using steerable orientation analysis.
In order to apply the regularization approach to the interpolation procedure, an observation model of the LR video formation system is first presented. Based on the observation model, an interpolated image can be obtained, where the residual between the original HR and the interpolated images is minimized under a priori constraints. In addition, directional high-frequency components are preserved in the noise-smoothing process by combining spatially adaptive constraints. By experimentation, interpolated images using the conventional algorithms are compared with the proposed adaptive fusion-based algorithm. Experimental results show that the proposed algorithm has the advantage of preserving directional high-frequency components and suppressing undesirable artifacts such as noise.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
[andrews77]
go back to reference H.C. Andrews, B.R. Hunt, Digital Image Restoration (Prentice-Hall, Englewood Cliffs, 1977) H.C. Andrews, B.R. Hunt, Digital Image Restoration (Prentice-Hall, Englewood Cliffs, 1977)
[jain89]
go back to reference A.K. Jain, Fundamentals of Digital Image Processing (Prentice-Hall, Englewood Cliffs, 1989)MATH A.K. Jain, Fundamentals of Digital Image Processing (Prentice-Hall, Englewood Cliffs, 1989)MATH
[lim90]
go back to reference J.S. Lim, Two-Dimensional Signal and Image Processing (Prentice-Hall, Englewood Cliffs, 1990) J.S. Lim, Two-Dimensional Signal and Image Processing (Prentice-Hall, Englewood Cliffs, 1990)
[schowengerdt97]
go back to reference R.A. Schowengerdt, Remote Sensing: Models and Methods for Image Processing, 2nd edn. (Academic, New York, 1997) R.A. Schowengerdt, Remote Sensing: Models and Methods for Image Processing, 2nd edn. (Academic, New York, 1997)
[zhang99]
go back to reference Z. Zhang, R.C. Blum, A categorization of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application. Proc. IEEE 87, 1315–1326 (1999)CrossRef Z. Zhang, R.C. Blum, A categorization of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application. Proc. IEEE 87, 1315–1326 (1999)CrossRef
[klein99]
go back to reference L.A. Klein, Sensor and Data Fusion Concepts and Applications (SPIE Optical Engineering Press, 1999) L.A. Klein, Sensor and Data Fusion Concepts and Applications (SPIE Optical Engineering Press, 1999)
[unser91]
go back to reference M. Unser, Fast b-spline transforms for continuous image representation and interpolation. IEEE Trans. Pattern Anal. Mach. Intell. 13, 277–285 (1991)CrossRef M. Unser, Fast b-spline transforms for continuous image representation and interpolation. IEEE Trans. Pattern Anal. Mach. Intell. 13, 277–285 (1991)CrossRef
[parker83]
go back to reference J.A. Parker, R.V. Kenyon, D.E. Troxel, Comparison of interpolating methods for image resampling. IEEE Trans. Med. Imaging 2, 31–39 (1983)CrossRef J.A. Parker, R.V. Kenyon, D.E. Troxel, Comparison of interpolating methods for image resampling. IEEE Trans. Med. Imaging 2, 31–39 (1983)CrossRef
[hong96]
go back to reference K.P. Hong, J.K. Paik, H.J. Kim, C.H. Lee, An edge-preserving image interpolation system for a digital camcoder. IEEE Trans. Consum. Electron. 42, 279–284 (1996)CrossRef K.P. Hong, J.K. Paik, H.J. Kim, C.H. Lee, An edge-preserving image interpolation system for a digital camcoder. IEEE Trans. Consum. Electron. 42, 279–284 (1996)CrossRef
[kim90]
go back to reference S.P. Kim, H.K. Bose, H.M. Valenzuela, Recursive reconstruction of high-resolution image from noisy undersampled frames. IEEE Trans. Acoust. 38, 1013–1027 (1990)CrossRef S.P. Kim, H.K. Bose, H.M. Valenzuela, Recursive reconstruction of high-resolution image from noisy undersampled frames. IEEE Trans. Acoust. 38, 1013–1027 (1990)CrossRef
[patti94]
go back to reference A. Patti, M.I. Sezan, and A.M. Tekalp, High-resolution image reconstruction from a low-resolution image sequence in the presence of time varying motion blur, Proc. Int. Conf. Image Processing (1994) A. Patti, M.I. Sezan, and A.M. Tekalp, High-resolution image reconstruction from a low-resolution image sequence in the presence of time varying motion blur, Proc. Int. Conf. Image Processing (1994)
[patti97]
go back to reference A. Patti, M.I. Sezan, A.M. Tekalp, Superresolution video reconstruction with arbitrary sampling lattices and nonzero aperture time. IEEE Trans. Image Process. 6, 1064–1076 (1997)CrossRef A. Patti, M.I. Sezan, A.M. Tekalp, Superresolution video reconstruction with arbitrary sampling lattices and nonzero aperture time. IEEE Trans. Image Process. 6, 1064–1076 (1997)CrossRef
[hong97]
go back to reference M.C. Hong, M.G. Kang, A.K. Katsaggelos, An iterative weighted regularized algorithm for improving the resolution of video sequences. Proc. Int. Conf. Image Process. 2, 474–477 (1997)CrossRef M.C. Hong, M.G. Kang, A.K. Katsaggelos, An iterative weighted regularized algorithm for improving the resolution of video sequences. Proc. Int. Conf. Image Process. 2, 474–477 (1997)CrossRef
[tom96]
go back to reference B.C. Tom and A.K. Katsaggelos, An iterative algorithm for improving the resolution of video sequences, Proc. SPIE Visual Comm. Image Proc., 1430–1438 (1996) B.C. Tom and A.K. Katsaggelos, An iterative algorithm for improving the resolution of video sequences, Proc. SPIE Visual Comm. Image Proc., 1430–1438 (1996)
[schultz96]
go back to reference R.R. Schultz, R.L. Stevenson, Extraction of high-resolution frames form video sequences. IEEE Trans. Image Process. 5, 996–1011 (1996)CrossRef R.R. Schultz, R.L. Stevenson, Extraction of high-resolution frames form video sequences. IEEE Trans. Image Process. 5, 996–1011 (1996)CrossRef
[shin99]
go back to reference J.H. Shin, J.H. Jung, and J.K. Paik, Spatial interpolation of image sequences using truncated projections onto convex sets, IEICE Trans. Fund. Electron. Comm. Comput. Sci. (1999) J.H. Shin, J.H. Jung, and J.K. Paik, Spatial interpolation of image sequences using truncated projections onto convex sets, IEICE Trans. Fund. Electron. Comm. Comput. Sci. (1999)
[hardie97]
go back to reference R.C. Hardie, K.J. Barnard, E.E. Armstrong, Joint map registration and high-resolution image estimation using a sequence of undersampled images. IEEE Trans. Image Process. 6, 1621–1633 (1997)CrossRef R.C. Hardie, K.J. Barnard, E.E. Armstrong, Joint map registration and high-resolution image estimation using a sequence of undersampled images. IEEE Trans. Image Process. 6, 1621–1633 (1997)CrossRef
[hardie98]
go back to reference R.C. Hardie, K.J. Barnard, J.G. Bognar, E.E. Armstrong, E.A. Watson, High-resolution image reconstruction from a sequence of rotate and translated frames and its application to an infrared imaging system. Opt. Eng. 37, 247–260 (1998)CrossRef R.C. Hardie, K.J. Barnard, J.G. Bognar, E.E. Armstrong, E.A. Watson, High-resolution image reconstruction from a sequence of rotate and translated frames and its application to an infrared imaging system. Opt. Eng. 37, 247–260 (1998)CrossRef
[patti95]
go back to reference A.J. Patti, M.I. Sezan, and A.M. Tekalp, High-resolution standards conversion of low resolution video, Proc. IEEE Int. Conf. Acoust. Speech Signal. Process., 2197–2200 (1995) A.J. Patti, M.I. Sezan, and A.M. Tekalp, High-resolution standards conversion of low resolution video, Proc. IEEE Int. Conf. Acoust. Speech Signal. Process., 2197–2200 (1995)
[elad97]
go back to reference M. Elad, A. Feuer, Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images. IEEE Trans. Image Process. 6, 1646–1658 (1997)CrossRef M. Elad, A. Feuer, Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images. IEEE Trans. Image Process. 6, 1646–1658 (1997)CrossRef
[tekalp95]
go back to reference A.M. Tekalp, Digital video processing (Prentice-Hall, Englewood Cliff, 1995) A.M. Tekalp, Digital video processing (Prentice-Hall, Englewood Cliff, 1995)
[shah99]
go back to reference N.R. Shah, A. Zakhor, Resolution enhancement of color video sequences. IEEE Trans. Image Process. 8, 879–885 (1999)CrossRef N.R. Shah, A. Zakhor, Resolution enhancement of color video sequences. IEEE Trans. Image Process. 8, 879–885 (1999)CrossRef
[kang97]
go back to reference M.G. Kang, A.K. Katsaggelos, Simultaneous multichannel image restoration and estimation of the regularization parameters. IEEE Trans. Image Process. 6, 774–778 (1997)CrossRef M.G. Kang, A.K. Katsaggelos, Simultaneous multichannel image restoration and estimation of the regularization parameters. IEEE Trans. Image Process. 6, 774–778 (1997)CrossRef
[shin98]
go back to reference J.H. Shin, J.H. Jung, J.K. Paik, Regularized iterative image interpolation and its application to spatially scalable coding. IEEE Trans. Consum. Electron. 44, 1042–1047 (1998)CrossRef J.H. Shin, J.H. Jung, J.K. Paik, Regularized iterative image interpolation and its application to spatially scalable coding. IEEE Trans. Consum. Electron. 44, 1042–1047 (1998)CrossRef
[shin00]
go back to reference J.H. Shin, J.S. Yoon, J.K. Paik, Image fusion-based adaptive regularization for image expansion. Proc. SPIE Image, Video Comm. Process. 3974, 1040–1051 (2000) J.H. Shin, J.S. Yoon, J.K. Paik, Image fusion-based adaptive regularization for image expansion. Proc. SPIE Image, Video Comm. Process. 3974, 1040–1051 (2000)
[shin00b]
go back to reference J.H. Shin, J.H. Jung, J.K. Paik, M.A. Abidi, Adaptive image sequence resolution enhancement using multiscale decomposition based image fusion. Proc. SPIE Visual Comm. Image Proc. 3, 1589–1600 (2000) J.H. Shin, J.H. Jung, J.K. Paik, M.A. Abidi, Adaptive image sequence resolution enhancement using multiscale decomposition based image fusion. Proc. SPIE Visual Comm. Image Proc. 3, 1589–1600 (2000)
[schultz94]
go back to reference R.R. Schultz, R.L. Stevenson, A bayesian approach to image expansion for improved definition. IEEE Trans. Image Process. 3, 233–242 (1994)CrossRef R.R. Schultz, R.L. Stevenson, A bayesian approach to image expansion for improved definition. IEEE Trans. Image Process. 3, 233–242 (1994)CrossRef
[trussel84]
go back to reference H.J. Trussell, M.R. Civanlar, The feasible solution in signal restoration. IEEE Trans. Acoust. 32, 201–212 (1984)CrossRef H.J. Trussell, M.R. Civanlar, The feasible solution in signal restoration. IEEE Trans. Acoust. 32, 201–212 (1984)CrossRef
[youla82]
go back to reference D.C. Youla, H. Webb, Image restoration by the method of convex projections: part 1-theory. IEEE Trans. Med. Imaging MI-1, 81–94 (1982)CrossRef D.C. Youla, H. Webb, Image restoration by the method of convex projections: part 1-theory. IEEE Trans. Med. Imaging MI-1, 81–94 (1982)CrossRef
[hall92]
go back to reference D.L. Hall, Mathematical Techniques in Multisensor Data Fusion (Artech House, 1992) D.L. Hall, Mathematical Techniques in Multisensor Data Fusion (Artech House, 1992)
[anderson76]
go back to reference G.L. Anderson, A.N. Netravali, Image restoration based on a subjective criterion. IEEE Trans. Syst. Man Cybern. SMC-6, 845–853 (1976)CrossRef G.L. Anderson, A.N. Netravali, Image restoration based on a subjective criterion. IEEE Trans. Syst. Man Cybern. SMC-6, 845–853 (1976)CrossRef
[katsaggelos89]
go back to reference A.K. Katsaggelos, Iterative image restoration algorithms. Opt. Eng. 28, 735–748 (1989)CrossRef A.K. Katsaggelos, Iterative image restoration algorithms. Opt. Eng. 28, 735–748 (1989)CrossRef
[katsaggelos91]
go back to reference A.K. Katsaggelos, J. Biemond, R.W. Schafer, R.M. Mersereau, A regularized iterative image restoration algorithms. IEEE Trans. Signal Process. 39(4), 914–929 (1991)CrossRef A.K. Katsaggelos, J. Biemond, R.W. Schafer, R.M. Mersereau, A regularized iterative image restoration algorithms. IEEE Trans. Signal Process. 39(4), 914–929 (1991)CrossRef
[freeman91]
go back to reference W.T. Freeman, E.H. Adelson, The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 13, 891–906 (1991)CrossRef W.T. Freeman, E.H. Adelson, The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 13, 891–906 (1991)CrossRef
Metadata
Title
Regularized Image Interpolation Based on Data Fusion
Authors
Mongi A. Abidi
Andrei V. Gribok
Joonki Paik
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-46364-3_8

Premium Partner