Skip to main content
Top

2016 | OriginalPaper | Chapter

Rehabilitation Technologies for Spinal Injury

Authors : Guillermo Asín Prieto, Amaia Ilzarbe Andrés, Anusha Venkatakrishnan, Wasim Q. Malik, Volker Dietz, William Zev Rymer

Published in: Emerging Therapies in Neurorehabilitation II

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Spinal cord injury (SCI) results in a temporary or permanent impairment in the spinal cord’s normal motor, sensory, or autonomic function below the level of the lesion causing significant functional impairments in individuals. Restoration of gait is one of the major rehabilitation goals for SCI patients, along with recovery of upper limb control and other functions. When treating an individual with SCI, the ultimate objective is complete reparation of the functional damage, which is presently not yet possible. However, both human and animal studies in neuroplasticity have shown that the spinal cord has some potential to reorganize despite the loss of supraspinal input and utilize the remaining peripheral input to control stepping and standing. Therefore, optimally leveraging the interaction of neuroplasticity with technological devices to restore functionality in these individuals is the main focus of current research efforts in neurorehabilitation. In this chapter, we briefly review the clinical aspects of SCI and present a summary of the present and future approaches for rehabilitation of SCI patients and discuss how these techniques may restore function and potentially promote recovery in these patients.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Aach, M., Cruciger, O., Sczesny-Kaiser, M., Hoffken, O., Meindl, R.C., Tegenthoff, M., Schwenkreis, P., Sankai, Y., Schildhauer, T.A.: Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. Spine J. (2014) Aach, M., Cruciger, O., Sczesny-Kaiser, M., Hoffken, O., Meindl, R.C., Tegenthoff, M., Schwenkreis, P., Sankai, Y., Schildhauer, T.A.: Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. Spine J. (2014)
2.
go back to reference Alcobendas Maestro, M.: Conceptos generales sobre el síndrome de lesión medular, Lesión medular, enfoque multidisciplinario. Editorial Médica Panamericana, Madrid (2009) Alcobendas Maestro, M.: Conceptos generales sobre el síndrome de lesión medular, Lesión medular, enfoque multidisciplinario. Editorial Médica Panamericana, Madrid (2009)
3.
go back to reference Arle, J.E., Shils, J.L., Malik, W.Q.: Localized stimulation and recording in the spinal cord with microelectrode arrays. In: Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1851–1854 (2012) Arle, J.E., Shils, J.L., Malik, W.Q.: Localized stimulation and recording in the spinal cord with microelectrode arrays. In: Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1851–1854 (2012)
4.
go back to reference Ashworth, B.: Preliminary trial of carisoprodol in multiple sclerosis. Practitioner 192, 540 (1964) Ashworth, B.: Preliminary trial of carisoprodol in multiple sclerosis. Practitioner 192, 540 (1964)
5.
go back to reference Behrman, A.L., Lawless-dixon, A.R., Sandra, B., Bowden, M.G., Nair, P., Phadke, C., Hannold, E.M., Plummer, P., Susan, J.: Case report locomotor training progression and outcomes after incomplete spinal cord injury (2005) Behrman, A.L., Lawless-dixon, A.R., Sandra, B., Bowden, M.G., Nair, P., Phadke, C., Hannold, E.M., Plummer, P., Susan, J.: Case report locomotor training progression and outcomes after incomplete spinal cord injury (2005)
6.
go back to reference Belda-Lois, J.-M., Mena-del Horno, S., Bermejo-Bosch, I., Moreno, J.C., Pons, J.L., Farina, D., Iosa, M., Molinari, M., Tamburella, F., Ramos, A., et al.: Rehabilitation of gait after stroke: a review towards a top-down approach. J. Neuroengineering Rehabil. 8(1), 66 (2011)CrossRef Belda-Lois, J.-M., Mena-del Horno, S., Bermejo-Bosch, I., Moreno, J.C., Pons, J.L., Farina, D., Iosa, M., Molinari, M., Tamburella, F., Ramos, A., et al.: Rehabilitation of gait after stroke: a review towards a top-down approach. J. Neuroengineering Rehabil. 8(1), 66 (2011)CrossRef
7.
go back to reference Bohannon, R.W., Smith, M.B.: Interrater reliability of a modified ashworth scale of muscle spasticity. Phys. Ther. 67(2), 206–207 (1987)CrossRef Bohannon, R.W., Smith, M.B.: Interrater reliability of a modified ashworth scale of muscle spasticity. Phys. Ther. 67(2), 206–207 (1987)CrossRef
8.
go back to reference Cai, L.L., Fong, A.J., Otoshi, C.K., Liang, Y., Burdick, J.W., Roy, R.R., Edgerton, V.R.: Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning. J. Neurosci. 26(41), 10564–10568 (2006) Cai, L.L., Fong, A.J., Otoshi, C.K., Liang, Y., Burdick, J.W., Roy, R.R., Edgerton, V.R.: Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning. J. Neurosci. 26(41), 10564–10568 (2006)
9.
go back to reference Collinger, J.L., Foldes, S., Bruns, T.M., Wodlinger, B., Gaunt, R., Weber, D.J.: Neuroprosthetic technology for individuals with spinal cord injury. J. Spinal Cord Med. 36(4), 258–272 (2013)CrossRef Collinger, J.L., Foldes, S., Bruns, T.M., Wodlinger, B., Gaunt, R., Weber, D.J.: Neuroprosthetic technology for individuals with spinal cord injury. J. Spinal Cord Med. 36(4), 258–272 (2013)CrossRef
10.
go back to reference Collinger, J.L., Wodlinger, B., Downey, J.E., Wang, W., Tyler-Kabara, E.C., Weber, D.J., McMorland, A.J., Velliste, M., Boninger, M.L., Schwartz, A.B.: High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381(9866), 557–564 (2013)CrossRef Collinger, J.L., Wodlinger, B., Downey, J.E., Wang, W., Tyler-Kabara, E.C., Weber, D.J., McMorland, A.J., Velliste, M., Boninger, M.L., Schwartz, A.B.: High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381(9866), 557–564 (2013)CrossRef
11.
go back to reference Contreras-Vidal, J.L., Grossman, R.G.: Neurorex: a clinical neural interface roadmap for eeg-based brain machine interfaces to a lower body robotic exoskeleton. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013, 1579–1582 (2013) Contreras-Vidal, J.L., Grossman, R.G.: Neurorex: a clinical neural interface roadmap for eeg-based brain machine interfaces to a lower body robotic exoskeleton. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013, 1579–1582 (2013)
12.
go back to reference del Ama, A.J., Gil-Agudo, Á., Pons, J.L., Moreno, J.C.: Hybrid fes-robot cooperative control of ambulatory gait rehabilitation exoskeleton. J. Neuroengineering Rehabil. 11(1), 27 (2014)CrossRef del Ama, A.J., Gil-Agudo, Á., Pons, J.L., Moreno, J.C.: Hybrid fes-robot cooperative control of ambulatory gait rehabilitation exoskeleton. J. Neuroengineering Rehabil. 11(1), 27 (2014)CrossRef
13.
go back to reference Dietz, V., Colombo, G., Joerg, M., Schreier, R.: Treadmill training of paraplegic patients using a robotic orthosis. J. Rehabil. Res. Dev. 37(6), 693–700 (2000) Dietz, V., Colombo, G., Joerg, M., Schreier, R.: Treadmill training of paraplegic patients using a robotic orthosis. J. Rehabil. Res. Dev. 37(6), 693–700 (2000)
14.
go back to reference Dietz, V., Fouad, K.: Restoration of sensorimotor functions after spinal cord injury. Brain J. Neurol. 137(Pt 3), 654–667 (2014)CrossRef Dietz, V., Fouad, K.: Restoration of sensorimotor functions after spinal cord injury. Brain J. Neurol. 137(Pt 3), 654–667 (2014)CrossRef
15.
go back to reference Ditunno, P., Dittuno, J.: Walking index for spinal cord injury (wisci ii): scale revision. Spinal Cord 39(12), 654–656 (2001)CrossRef Ditunno, P., Dittuno, J.: Walking index for spinal cord injury (wisci ii): scale revision. Spinal Cord 39(12), 654–656 (2001)CrossRef
16.
go back to reference Edgerton, V.R., Roy, R.R.: Robotic training and spinal cord plasticity. Brain Res. Bull. 78(1), 4–12 (2009)CrossRef Edgerton, V.R., Roy, R.R.: Robotic training and spinal cord plasticity. Brain Res. Bull. 78(1), 4–12 (2009)CrossRef
17.
go back to reference Esclarín de Ruz, A., de Pinto Benito, A.: Lesión medular, Enfoque multidisciplinario. Médica Panamericana, Madrid (2009) Esclarín de Ruz, A., de Pinto Benito, A.: Lesión medular, Enfoque multidisciplinario. Médica Panamericana, Madrid (2009)
18.
go back to reference Field-Fote, E.C.: Spinal cord control of movement : implications for locomotor rehabilitation following spinal cord injury. Phys. Ther. 80(5), 477–484 (2000) Field-Fote, E.C.: Spinal cord control of movement : implications for locomotor rehabilitation following spinal cord injury. Phys. Ther. 80(5), 477–484 (2000)
19.
go back to reference Fiori, F., Sedda, A., Ferrè, E.R., Toraldo, A., Querzola, M., Pasotti, F., Ovadia, D., Piroddi, C., Dell’Aquila, R., Redaelli, T. et al.: Motor imagery in spinal cord injury patients: moving makes the difference. J. Neuropsychology (2013) Fiori, F., Sedda, A., Ferrè, E.R., Toraldo, A., Querzola, M., Pasotti, F., Ovadia, D., Piroddi, C., Dell’Aquila, R., Redaelli, T. et al.: Motor imagery in spinal cord injury patients: moving makes the difference. J. Neuropsychology (2013)
20.
go back to reference Flint, R.D., Lindberg, E.W., Jordan, L.R., Miller, L.E., Slutzky, M.W.: Accurate decoding of reaching movements from field potentials in the absence of spikes. J. Neural Eng. 9(4), 046006 (2012)CrossRef Flint, R.D., Lindberg, E.W., Jordan, L.R., Miller, L.E., Slutzky, M.W.: Accurate decoding of reaching movements from field potentials in the absence of spikes. J. Neural Eng. 9(4), 046006 (2012)CrossRef
21.
go back to reference Frood, R.T.: Review the use of treadmill training to recover locomotor ability in patients with spinal cord injury. Biosci. Horiz. 4(1), 108–117 (2011) Frood, R.T.: Review the use of treadmill training to recover locomotor ability in patients with spinal cord injury. Biosci. Horiz. 4(1), 108–117 (2011)
22.
go back to reference Giszter, S.F.: S cord injury: present and future therapeutic devices and prostheses. Neurotherapeutics 5(1), 147–162 (2008)CrossRef Giszter, S.F.: S cord injury: present and future therapeutic devices and prostheses. Neurotherapeutics 5(1), 147–162 (2008)CrossRef
23.
go back to reference Haas, B., Bergström, E., Jamous, A., Bennie, A.: The inter rater reliability of the original and of the modified ashworth scale for the assessment of spasticity in patients with spinal cord injury. Spinal Cord 34(9), 560–564 (1996)CrossRef Haas, B., Bergström, E., Jamous, A., Bennie, A.: The inter rater reliability of the original and of the modified ashworth scale for the assessment of spasticity in patients with spinal cord injury. Spinal Cord 34(9), 560–564 (1996)CrossRef
24.
go back to reference Hamid, S., Hayek, A.R.: Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury : an overview, pp. 1256–1269 (2008) Hamid, S., Hayek, A.R.: Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury : an overview, pp. 1256–1269 (2008)
25.
go back to reference Hicks, A.L., Ginis, K.M.: Treadmill training after spinal cord injury: it’s not just about the walking. J. Rehabil. Res. Dev. 45(2), 241 (2008)CrossRef Hicks, A.L., Ginis, K.M.: Treadmill training after spinal cord injury: it’s not just about the walking. J. Rehabil. Res. Dev. 45(2), 241 (2008)CrossRef
26.
go back to reference Hochberg, L.R., Bacher, D., Jarosiewicz, B., Masse, N.Y., Simeral, J.D., Vogel, J., Haddadin, S., Liu, J., Cash, S.S., van der Smagt, P., Donoghue, J.P.: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398), 372–375 (2012)CrossRef Hochberg, L.R., Bacher, D., Jarosiewicz, B., Masse, N.Y., Simeral, J.D., Vogel, J., Haddadin, S., Liu, J., Cash, S.S., van der Smagt, P., Donoghue, J.P.: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398), 372–375 (2012)CrossRef
27.
go back to reference Hsieh, J., Wolfe, D., Miller, W., Curt, A.: Spasticity outcome measures in spinal cord injury: psychometric properties and clinical utility. Spinal Cord 46(2), 86–95 (2007)CrossRef Hsieh, J., Wolfe, D., Miller, W., Curt, A.: Spasticity outcome measures in spinal cord injury: psychometric properties and clinical utility. Spinal Cord 46(2), 86–95 (2007)CrossRef
28.
go back to reference Hwang, E.J., Andersen, R.A.: The utility of multichannel local field potentials for brain-machine interfaces. J. Neural Eng. 10(4), 046005 (2013)CrossRef Hwang, E.J., Andersen, R.A.: The utility of multichannel local field potentials for brain-machine interfaces. J. Neural Eng. 10(4), 046005 (2013)CrossRef
29.
go back to reference Jezernik, S., Colombo, G., Keller, T., Frueh, H., Morari, M.: Robotic orthosis lokomat: a rehabilitation and research tool. Neuromodulation J. Int. Neuromodulation Soc. 6(2), 108–115 (2003) Jezernik, S., Colombo, G., Keller, T., Frueh, H., Morari, M.: Robotic orthosis lokomat: a rehabilitation and research tool. Neuromodulation J. Int. Neuromodulation Soc. 6(2), 108–115 (2003)
30.
go back to reference Jones, E., Mulley, G.: The Measurement of Spasticity, Advances in Stroke Therapy, pp. 187–95. Raven Press, New York (1982) Jones, E., Mulley, G.: The Measurement of Spasticity, Advances in Stroke Therapy, pp. 187–95. Raven Press, New York (1982)
31.
go back to reference Keith, M.W., Peckham, P.H., Thrope, G.B., Buckett, J.R., Stroh, K.C., Menger, V.: Functional neuromuscular stimulation neuroprostheses for the tetraplegic hand. Clin. Orthop. Relat. Res. 233, 25–33 (1988) Keith, M.W., Peckham, P.H., Thrope, G.B., Buckett, J.R., Stroh, K.C., Menger, V.: Functional neuromuscular stimulation neuroprostheses for the tetraplegic hand. Clin. Orthop. Relat. Res. 233, 25–33 (1988)
32.
go back to reference Kilicarslan, A., Prasad, S., Grossman, R.G., Contreras-Vidal, J.L.: High accuracy decoding of user intentions using eeg to control a lower-body exoskeleton. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013, 5606–5609 (2013) Kilicarslan, A., Prasad, S., Grossman, R.G., Contreras-Vidal, J.L.: High accuracy decoding of user intentions using eeg to control a lower-body exoskeleton. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013, 5606–5609 (2013)
33.
go back to reference Kirshblum, S., Donovan, W.H.: Neurologic assessment and classification of traumatic spinal cord injury. In: Kirshblum, S., Campagnolo, D.I., DeLisa, J.A. (eds.) Spinal cord medicine. Lippincott Williams & Wilkins, Philadelphia, pp. 82–95. (2002) Kirshblum, S., Donovan, W.H.: Neurologic assessment and classification of traumatic spinal cord injury. In: Kirshblum, S., Campagnolo, D.I., DeLisa, J.A. (eds.) Spinal cord medicine. Lippincott Williams & Wilkins, Philadelphia, pp. 82–95. (2002)
34.
go back to reference Kreilinger, A., Kaiser, V., Rohm, M., Rupp, R., Müller-Putz, G.: Bci and fes training of a spinal cord injured end-user to control a neuroprosthesis. Biomed. Eng./Biomedizinische Technik (2013) Kreilinger, A., Kaiser, V., Rohm, M., Rupp, R., Müller-Putz, G.: Bci and fes training of a spinal cord injured end-user to control a neuroprosthesis. Biomed. Eng./Biomedizinische Technik (2013)
35.
go back to reference Lance, J.: Symposium synopsis. In: Feldman, R.G., Young, R.R., Koella, W.P. (eds.) Spasticity: Disordered Motor Control, p. 485. Year Book Medical Publishers, Chicago (1980) Lance, J.: Symposium synopsis. In: Feldman, R.G., Young, R.R., Koella, W.P. (eds.) Spasticity: Disordered Motor Control, p. 485. Year Book Medical Publishers, Chicago (1980)
36.
go back to reference Lim, P.A.C., Tow, A.M.: Recovery and regeneration after spinal cord injury: a review and summary of recent literature. Ann. Acad. Med. Singap. 36(1), 49–57 (2007) Lim, P.A.C., Tow, A.M.: Recovery and regeneration after spinal cord injury: a review and summary of recent literature. Ann. Acad. Med. Singap. 36(1), 49–57 (2007)
37.
go back to reference Malik, W.Q., Truccolo, W., Brown, E.N., Hochberg, L.R.: Efficient decoding with steady-state kalman filter in neural interface systems. IEEE Trans. Neural Syst. Rehabil. Eng. 19(1), 25–34 (2011)CrossRef Malik, W.Q., Truccolo, W., Brown, E.N., Hochberg, L.R.: Efficient decoding with steady-state kalman filter in neural interface systems. IEEE Trans. Neural Syst. Rehabil. Eng. 19(1), 25–34 (2011)CrossRef
38.
go back to reference Maynard Jr, F.M., Bracken, M.B., Creasey, G., Ditunno Jr, J.F., Donovan, W.H., Ducker, T.B., Garber, S.L., Marino, R.J., Stover, S.L., Tator, C.H., et al.: International standards for neurological and functional classification of spinal cord injury. American spinal injury association. Spinal Cord 35(5), 266 (1997)CrossRef Maynard Jr, F.M., Bracken, M.B., Creasey, G., Ditunno Jr, J.F., Donovan, W.H., Ducker, T.B., Garber, S.L., Marino, R.J., Stover, S.L., Tator, C.H., et al.: International standards for neurological and functional classification of spinal cord injury. American spinal injury association. Spinal Cord 35(5), 266 (1997)CrossRef
39.
go back to reference Moran, D.W., Schwartz, A.B.: Motor cortical representation of speed and direction during reaching. J. Neurophysiol. 82(5), 2676–2692 (1999) Moran, D.W., Schwartz, A.B.: Motor cortical representation of speed and direction during reaching. J. Neurophysiol. 82(5), 2676–2692 (1999)
40.
go back to reference Moreno-Duarte, I., Morse, L.R., Alam, M., Bikson, M., Zafonte, R., Fregni, F.: Targeted therapies using electrical and magnetic neural stimulation for the treatment of chronic pain in spinal cord injury. Neuroimage 85(Pt 3), 1003–1013 (2014) Moreno-Duarte, I., Morse, L.R., Alam, M., Bikson, M., Zafonte, R., Fregni, F.: Targeted therapies using electrical and magnetic neural stimulation for the treatment of chronic pain in spinal cord injury. Neuroimage 85(Pt 3), 1003–1013 (2014)
41.
go back to reference Müller-Putz, G., Daly, I., Kaiser, V.: Motor imagery-induced eeg patterns in individuals with spinal cord injury and their impact on brain-computer interface accuracy. J. Neural Eng. 11(3), 035011 (2014)CrossRef Müller-Putz, G., Daly, I., Kaiser, V.: Motor imagery-induced eeg patterns in individuals with spinal cord injury and their impact on brain-computer interface accuracy. J. Neural Eng. 11(3), 035011 (2014)CrossRef
42.
go back to reference Murray, S., Goldfarb, M.: Towards the use of a lower limb exoskeleton for locomotion assistance in individuals with neuromuscular locomotor deficits. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012, 1912–1915 (2012) Murray, S., Goldfarb, M.: Towards the use of a lower limb exoskeleton for locomotion assistance in individuals with neuromuscular locomotor deficits. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012, 1912–1915 (2012)
43.
go back to reference Mushahwar, V.K., Collins, D.F., Prochazka, A.: Spinal cord microstimulation generates functional limb movements in chronically implanted cats. Exp. Neurol 163(2), 422–429 (2000)CrossRef Mushahwar, V.K., Collins, D.F., Prochazka, A.: Spinal cord microstimulation generates functional limb movements in chronically implanted cats. Exp. Neurol 163(2), 422–429 (2000)CrossRef
44.
go back to reference Penn, R.D., Savoy, S.M., Corcos, D., Latash, M., Gottlieb, G., Parke, B., Kroin, J.S.: Intrathecal baclofen for severe spinal spasticity. New Engl. J. Med. 320(23), 1517–1521 (1989)CrossRef Penn, R.D., Savoy, S.M., Corcos, D., Latash, M., Gottlieb, G., Parke, B., Kroin, J.S.: Intrathecal baclofen for severe spinal spasticity. New Engl. J. Med. 320(23), 1517–1521 (1989)CrossRef
45.
go back to reference Perge, J.A., Homer, M.L., Malik, W.Q., Cash, S., Eskandar, E., Friehs, G., Donoghue, J.P., Hochberg, L.R.: Intra-day signal instabilities affect decoding performance in an intracortical neural interface system. J. Neural Eng. 10(3), 036004 (2013)CrossRef Perge, J.A., Homer, M.L., Malik, W.Q., Cash, S., Eskandar, E., Friehs, G., Donoghue, J.P., Hochberg, L.R.: Intra-day signal instabilities affect decoding performance in an intracortical neural interface system. J. Neural Eng. 10(3), 036004 (2013)CrossRef
46.
go back to reference Priebe, M.M., Sherwood, A.M., Thornby, J.I., Kharas, N.F., Markowski, J.: Clinical assessment of spasticity in spinal cord injury: a multidimensional problem. Arch. Phys. Med. Rehabil. 77(7), 713–716 (1996)CrossRef Priebe, M.M., Sherwood, A.M., Thornby, J.I., Kharas, N.F., Markowski, J.: Clinical assessment of spasticity in spinal cord injury: a multidimensional problem. Arch. Phys. Med. Rehabil. 77(7), 713–716 (1996)CrossRef
47.
go back to reference Quintero, H.A., Farris, R.J., Hartigan, C., Clesson, I., Goldfarb, M.: A powered lower limb orthosis for providing legged mobility in paraplegic individuals. Top Spinal Cord Inj. Rehabil. 17(1), 25–33 (2011)CrossRef Quintero, H.A., Farris, R.J., Hartigan, C., Clesson, I., Goldfarb, M.: A powered lower limb orthosis for providing legged mobility in paraplegic individuals. Top Spinal Cord Inj. Rehabil. 17(1), 25–33 (2011)CrossRef
48.
go back to reference Rohm, M., Schneiders, M., Müller, C., Kreilinger, A., Kaiser, V., Müller-Putz, G.R., Rupp, R.: Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury. Artif. Intell. Med. 59(2), 133–142 (2013)CrossRef Rohm, M., Schneiders, M., Müller, C., Kreilinger, A., Kaiser, V., Müller-Putz, G.R., Rupp, R.: Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury. Artif. Intell. Med. 59(2), 133–142 (2013)CrossRef
49.
go back to reference Rupp, R., Müller-Putz, G.R.: Bci-controlled grasp neuroprosthesis in high spinal cord injury. In: Converging Clinical and Engineering Research on Neurorehabilitation, pp. 1253–1258. Springer, New York (2013) Rupp, R., Müller-Putz, G.R.: Bci-controlled grasp neuroprosthesis in high spinal cord injury. In: Converging Clinical and Engineering Research on Neurorehabilitation, pp. 1253–1258. Springer, New York (2013)
50.
go back to reference Sadowsky, C., Volshteyn, O., Schultz, L., McDonald, J.W.: Spinal cord injury. Disabil. Rehabil. 24(13), 680–687 (2002)CrossRef Sadowsky, C., Volshteyn, O., Schultz, L., McDonald, J.W.: Spinal cord injury. Disabil. Rehabil. 24(13), 680–687 (2002)CrossRef
51.
go back to reference Saigal, R., Renzi, C., Mushahwar, V.K.: Intraspinal microstimulation generates functional movements after spinal-cord injury. IEEE Trans. Neural Syst. Rehabil. Eng. 12(4), 430–440 (2004)CrossRef Saigal, R., Renzi, C., Mushahwar, V.K.: Intraspinal microstimulation generates functional movements after spinal-cord injury. IEEE Trans. Neural Syst. Rehabil. Eng. 12(4), 430–440 (2004)CrossRef
52.
go back to reference Sartori, M., Reggiani, M., Farina, D., Lloyd, D.G.: Emg-driven forward-dynamic estimation of muscle force and joint moment about multiple degrees of freedom in the human lower extremity. PloS one 7(12), e52618 (2012)CrossRef Sartori, M., Reggiani, M., Farina, D., Lloyd, D.G.: Emg-driven forward-dynamic estimation of muscle force and joint moment about multiple degrees of freedom in the human lower extremity. PloS one 7(12), e52618 (2012)CrossRef
53.
go back to reference Spuler, M., Walter, A., Ramos-Murguialday, A., Naros, G., Birbaumer, N., Gharabaghi, A., Rosenstiel, W., Bogdan, M.: Decoding of motor intentions from epidural ecog recordings in severely paralyzed chronic stroke patients. J. Neural Eng. 11(6), 066008 (2014)CrossRef Spuler, M., Walter, A., Ramos-Murguialday, A., Naros, G., Birbaumer, N., Gharabaghi, A., Rosenstiel, W., Bogdan, M.: Decoding of motor intentions from epidural ecog recordings in severely paralyzed chronic stroke patients. J. Neural Eng. 11(6), 066008 (2014)CrossRef
54.
go back to reference Staas, W., Formal, C., Freedman, M., Fried, G., Read, M.S.: Spinal cord injury and spinal cord injury medicine, Rehabilitation medicine principles and practice, Lippincott Raven, Philadelphia (1998) Staas, W., Formal, C., Freedman, M., Fried, G., Read, M.S.: Spinal cord injury and spinal cord injury medicine, Rehabilitation medicine principles and practice, Lippincott Raven, Philadelphia (1998)
55.
go back to reference Stark, E., Abeles, M.: Predicting movement from multiunit activity. J. Neurosci. 27(31), 8387–8394 (2007)CrossRef Stark, E., Abeles, M.: Predicting movement from multiunit activity. J. Neurosci. 27(31), 8387–8394 (2007)CrossRef
56.
go back to reference Stauffer, Y., Allemand, Y., Bouri, M., Fournier, J., Clavel, R., Metrailler, P., Brodard, R., Reynard, F.: The walktrainer–a new generation of walking reeducation device combining orthoses and muscle stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 17(1), 38–45 (2009)CrossRef Stauffer, Y., Allemand, Y., Bouri, M., Fournier, J., Clavel, R., Metrailler, P., Brodard, R., Reynard, F.: The walktrainer–a new generation of walking reeducation device combining orthoses and muscle stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 17(1), 38–45 (2009)CrossRef
57.
go back to reference Tabakow, P., Jarmundowicz, W., Czapiga, B., Fortuna, W., Miedzybrodzki, R., Czyz, M., Huber, J., Szarek, D., Okurowski, S., Szewczyk, P., et al.: Transplantation of autologous olfactory ensheathing cells in complete human spinal cord injury. Cell Transplant. 22(9), 1591–1612 (2013)CrossRef Tabakow, P., Jarmundowicz, W., Czapiga, B., Fortuna, W., Miedzybrodzki, R., Czyz, M., Huber, J., Szarek, D., Okurowski, S., Szewczyk, P., et al.: Transplantation of autologous olfactory ensheathing cells in complete human spinal cord injury. Cell Transplant. 22(9), 1591–1612 (2013)CrossRef
58.
go back to reference Tamez-Duque, J., Cobian-Ugalde, R., Kilicarslan, A., Venkatakrishnan, A., Soto, R., Contreras-Vidal, J.: Real-time strap pressure sensor system for powered exoskeletons. Sensors 15(2), 4550–4563 (2015)CrossRef Tamez-Duque, J., Cobian-Ugalde, R., Kilicarslan, A., Venkatakrishnan, A., Soto, R., Contreras-Vidal, J.: Real-time strap pressure sensor system for powered exoskeletons. Sensors 15(2), 4550–4563 (2015)CrossRef
59.
go back to reference Taylor, P., Esnouf, J., H, J.: The functional impact of the freehand system on tetraplegic hand function. Clinical results. Spinal Cord 40(11), 6–560 (2002)CrossRef Taylor, P., Esnouf, J., H, J.: The functional impact of the freehand system on tetraplegic hand function. Clinical results. Spinal Cord 40(11), 6–560 (2002)CrossRef
60.
go back to reference Urendes, E., Asín Prieto, G., Gómez, M., Ceres, R., Pons, J.L.: An integrated lower limb exoskeleton and body weight support system: design and implementation. In: International Workshop on Wearable Robotics, pp. 14–19 (2014) Urendes, E., Asín Prieto, G., Gómez, M., Ceres, R., Pons, J.L.: An integrated lower limb exoskeleton and body weight support system: design and implementation. In: International Workshop on Wearable Robotics, pp. 14–19 (2014)
61.
go back to reference Wang, W., Collinger, J.L., Degenhart, A.D., Tyler-Kabara, E.C., Schwartz, A.B., Moran, D.W., Weber, D.J., Wodlinger, B., Vinjamuri, R.K., Ashmore, R.C., Kelly, J.W., Boninger, M.L.: An electrocorticographic brain interface in an individual with tetraplegia. PLoS One 8(2), e55344 (2013)CrossRef Wang, W., Collinger, J.L., Degenhart, A.D., Tyler-Kabara, E.C., Schwartz, A.B., Moran, D.W., Weber, D.J., Wodlinger, B., Vinjamuri, R.K., Ashmore, R.C., Kelly, J.W., Boninger, M.L.: An electrocorticographic brain interface in an individual with tetraplegia. PLoS One 8(2), e55344 (2013)CrossRef
63.
go back to reference Wu, W., Gao, Y., Bienenstock, E., Donoghue, J.P., Black, M.J.: Bayesian population decoding of motor cortical activity using a kalman filter. Neural Comput. 18(1), 80–118 (2006)MathSciNetCrossRefMATH Wu, W., Gao, Y., Bienenstock, E., Donoghue, J.P., Black, M.J.: Bayesian population decoding of motor cortical activity using a kalman filter. Neural Comput. 18(1), 80–118 (2006)MathSciNetCrossRefMATH
64.
go back to reference Yozbatiran, N., Berliner, J., O’Malley, M.K., Pehlivan, A.U., Kadivar, Z., Boake, C., Francisco, G.E.: Robotic training and clinical assessment of upper extremity movements after spinal cord injury: a single case report. J. Rehabil. Med. 44(2), 186–188 (2012)CrossRef Yozbatiran, N., Berliner, J., O’Malley, M.K., Pehlivan, A.U., Kadivar, Z., Boake, C., Francisco, G.E.: Robotic training and clinical assessment of upper extremity movements after spinal cord injury: a single case report. J. Rehabil. Med. 44(2), 186–188 (2012)CrossRef
Metadata
Title
Rehabilitation Technologies for Spinal Injury
Authors
Guillermo Asín Prieto
Amaia Ilzarbe Andrés
Anusha Venkatakrishnan
Wasim Q. Malik
Volker Dietz
William Zev Rymer
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-24901-8_3