Skip to main content
Top
Published in: Journal of Iron and Steel Research International 8/2018

01-08-2018 | Original Paper

Relationship between secondary dendrite arm spacing and local solidification time of 30Cr2Ni4MoV alloy at slow cooling rates

Authors: Jing Zhao, Hong-gang Zhong, Ke Han, Ren-xing Li, Zhi-shuai Xu, Qi-jie Zhai

Published in: Journal of Iron and Steel Research International | Issue 8/2018

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Solidification process of 231 t 30Cr2Ni4MoV ingot manufactured by slow cooling process was studied using experimental and numerical simulations, which tackled the problems of high cost and long period in large ingot studying. Based on the numerical results of large ingot, five characteristic locations under different temperature gradients and cooling rates chosen from the large ingot were simulated. The experiments were performed under the same temperature conditions as in numerical simulations with specialized instrument. The influences of temperature gradient in the solid–liquid interface and solidification rate on the size and morphology of solidification structure were analyzed at cooling rate ranging from 10−3 to 10−2 °C s−1. Solidification macrostructure and microstructure showed that no columnar dendrite was found in any specimen. The grain size and secondary dendrite arm spacing decreased at larger cooling rate, and the relationship between secondary dendrite arm spacing and local solidification time or cooling rate was determined.
Literature
[1]
go back to reference B. Chalmers, Principles of solidification, John Wiley & Sons, Inc., New York, 1964. B. Chalmers, Principles of solidification, John Wiley & Sons, Inc., New York, 1964.
[2]
go back to reference J. Campbell, Casting, Butterworth-Heinemann, Burlington, 2003. J. Campbell, Casting, Butterworth-Heinemann, Burlington, 2003.
[3]
go back to reference P.N. Anyalebechi, Int. J. Math. Edu. Sci. Techol. 5 (2004) 219–227. P.N. Anyalebechi, Int. J. Math. Edu. Sci. Techol. 5 (2004) 219–227.
[4]
go back to reference Z. Chen, Q.J. Zhai, J.Y. Zhang, H.G. Zhong, J. Iron Steel Res. Int. 23 (2016) 973–980.CrossRef Z. Chen, Q.J. Zhai, J.Y. Zhang, H.G. Zhong, J. Iron Steel Res. Int. 23 (2016) 973–980.CrossRef
[5]
go back to reference I.N. Murthy, J.B. Rao, Int. J. Miner. Metall. Mater. 24 (2017) 784–793.CrossRef I.N. Murthy, J.B. Rao, Int. J. Miner. Metall. Mater. 24 (2017) 784–793.CrossRef
[6]
[7]
go back to reference T. Savaskan, M.S. Turhal, S. Murphy, Mater. Sci. Techol. 19 (2003) 67–74. T. Savaskan, M.S. Turhal, S. Murphy, Mater. Sci. Techol. 19 (2003) 67–74.
[8]
[9]
[10]
go back to reference S.W. Choi, Y.M. Kim, K.M. Lee, H.S. Cho, S.K. Hong, Y.C. Kim, C.S. Kang, S. Kumai, J. Alloy. Compd. 617 (2014) 654–659.CrossRef S.W. Choi, Y.M. Kim, K.M. Lee, H.S. Cho, S.K. Hong, Y.C. Kim, C.S. Kang, S. Kumai, J. Alloy. Compd. 617 (2014) 654–659.CrossRef
[11]
go back to reference L.H. Jiang, A.G. Wang, N.Y. Tian, W.C. Zhang, Q.L. Fan, J. Iron Steel Res. Int. 18 (2011) No. 8, 25–29.CrossRef L.H. Jiang, A.G. Wang, N.Y. Tian, W.C. Zhang, Q.L. Fan, J. Iron Steel Res. Int. 18 (2011) No. 8, 25–29.CrossRef
[12]
go back to reference C. Hoó, I. Teleszky, A. Roósz, Z. Csepeli, Mater. Sci. Forum 508 (2006) 245–250.CrossRef C. Hoó, I. Teleszky, A. Roósz, Z. Csepeli, Mater. Sci. Forum 508 (2006) 245–250.CrossRef
[13]
go back to reference C.X. Li, T.M. Guo, R.D. Li, R.X. Li, J.C. San, Foundry 53 (2004) 1011–1014. C.X. Li, T.M. Guo, R.D. Li, R.X. Li, J.C. San, Foundry 53 (2004) 1011–1014.
[14]
go back to reference D.R. Sun, H. Zhang, Z.X. Men, Heavy Cast Forge 4 (2014) 1–4. D.R. Sun, H. Zhang, Z.X. Men, Heavy Cast Forge 4 (2014) 1–4.
[15]
[16]
[17]
[18]
go back to reference H. Yamagata, W. Kasprzak, M. Aniolek, H. Kurita, J.H. Sokolowski, J. Mater. Process. Technol. 203 (2008) 333–341.CrossRef H. Yamagata, W. Kasprzak, M. Aniolek, H. Kurita, J.H. Sokolowski, J. Mater. Process. Technol. 203 (2008) 333–341.CrossRef
[19]
go back to reference L.A. Dobrzański, R. Maniara, J. Sokolowski, W. Kasprzaka, J. Mater. Process. Technol. 191 (2007) 317–320.CrossRef L.A. Dobrzański, R. Maniara, J. Sokolowski, W. Kasprzaka, J. Mater. Process. Technol. 191 (2007) 317–320.CrossRef
[20]
go back to reference W.S. Li, H.F. Shen, X. Zhang, B.C. Liu, Metall. Mater. Trans. B 45 (2014) 464–471.CrossRef W.S. Li, H.F. Shen, X. Zhang, B.C. Liu, Metall. Mater. Trans. B 45 (2014) 464–471.CrossRef
[21]
go back to reference J.Q. Wang, P.X. Fu, H.W. Liu, D.Z. Li, Y.Y. Li, Mater. Des. 35 (2012) 446–456.CrossRef J.Q. Wang, P.X. Fu, H.W. Liu, D.Z. Li, Y.Y. Li, Mater. Des. 35 (2012) 446–456.CrossRef
[22]
go back to reference M.T. Cheng, Z.H. Tang, M.S. Ni, J. Iron Steel Res. 5 (1993) No. 4, 1–4. M.T. Cheng, Z.H. Tang, M.S. Ni, J. Iron Steel Res. 5 (1993) No. 4, 1–4.
[23]
go back to reference W. Kurz, D.J. Fisher, Fundamentals of solidification, Trans. Tech. Publications Ltd., Switzerland, 1989. W. Kurz, D.J. Fisher, Fundamentals of solidification, Trans. Tech. Publications Ltd., Switzerland, 1989.
[24]
go back to reference T.Z. Kattamis, M.C. Flemings, Trans. Metall. Soc. AIME 233 (1965) 992–998. T.Z. Kattamis, M.C. Flemings, Trans. Metall. Soc. AIME 233 (1965) 992–998.
Metadata
Title
Relationship between secondary dendrite arm spacing and local solidification time of 30Cr2Ni4MoV alloy at slow cooling rates
Authors
Jing Zhao
Hong-gang Zhong
Ke Han
Ren-xing Li
Zhi-shuai Xu
Qi-jie Zhai
Publication date
01-08-2018
Publisher
Springer Singapore
Published in
Journal of Iron and Steel Research International / Issue 8/2018
Print ISSN: 1006-706X
Electronic ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-018-0119-y

Other articles of this Issue 8/2018

Journal of Iron and Steel Research International 8/2018 Go to the issue

Premium Partners