Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 15/2019

11-07-2019

Relaxor like colossal dielectric constant in CoWO4 and CoWO4/PbWO4 nanocomposites

Authors: M. Jeyakanthan, Uma Subramanian, R. B. Tangsali, Roshan Jose, K. Venkata Saravanan

Published in: Journal of Materials Science: Materials in Electronics | Issue 15/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Dielectric constant ε′ and dielectric loss ε″ were measured in the frequency range of 500 Hz–3 MHz from room temperature (RT) to 350 °C for CoWO4 and CoWO4/PbWO4 nanocomposites sintered at 600 °C. Dielectric constant was found to be higher for nanocomposite samples as compared to CoWO4 sample and was maximum for Pb/Co ratio optimal value of 0.028. Relaxor like anomaly and colossal dielectric constants were observed above RT due to Maxwell–Wagner effect without structural and phase transition of the materials. Relaxor like properties for these materials were confirmed by Vogel–Fulcher and modified Curie–Weiss laws. However the samples sintered at 1000 °C do not show relaxor like behaviour and exhibit low dielectric constant ε′ at RT as compared to those sintered at 600 °C. P–E curve depicts the weak ferroelectric nature of the samples.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference P.H.C. Camargo, K.G. Satyanarayana, F. Wypych, Nanocomposites: synthesis, structure, properties and new application opportunities. Mater. Res. 12, 1–39 (2012)CrossRef P.H.C. Camargo, K.G. Satyanarayana, F. Wypych, Nanocomposites: synthesis, structure, properties and new application opportunities. Mater. Res. 12, 1–39 (2012)CrossRef
2.
go back to reference Y. Shanling, W. Zhang, G. Guangpeng, X. Hongchao, X. Dongyu, Structural design and properties of fine scale 2-2-2 PZT/epoxy piezoelectric composites for high frequency application. Ceram. Int. 44, 10940–10944 (2018)CrossRef Y. Shanling, W. Zhang, G. Guangpeng, X. Hongchao, X. Dongyu, Structural design and properties of fine scale 2-2-2 PZT/epoxy piezoelectric composites for high frequency application. Ceram. Int. 44, 10940–10944 (2018)CrossRef
3.
go back to reference R.C. Pullar, S. Farrah, N.M. Alford, MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics. J. Eur. Cerem. Soc. 27, 1059–1063 (2007)CrossRef R.C. Pullar, S. Farrah, N.M. Alford, MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics. J. Eur. Cerem. Soc. 27, 1059–1063 (2007)CrossRef
4.
go back to reference A.D. Mani, I. Soibam, Dielectric, magnetic and optical properties of (Bi, Gd)FeO3–Ni0.8Zn0.2Fe2O4 nanocomposites. Ceram. Int. 44, 2419–2425 (2018)CrossRef A.D. Mani, I. Soibam, Dielectric, magnetic and optical properties of (Bi, Gd)FeO3–Ni0.8Zn0.2Fe2O4 nanocomposites. Ceram. Int. 44, 2419–2425 (2018)CrossRef
5.
go back to reference Z. Wang, T. Wang, C. Wang, Y.J. Xiao, Mechanism of enhanced dielectric performance in Ba(Fe0.5Ta0.5)O3/poly(vinylidene fluoride) nanocomposites. Ceram. Int. 45, S244–S248 (2017)CrossRef Z. Wang, T. Wang, C. Wang, Y.J. Xiao, Mechanism of enhanced dielectric performance in Ba(Fe0.5Ta0.5)O3/poly(vinylidene fluoride) nanocomposites. Ceram. Int. 45, S244–S248 (2017)CrossRef
6.
go back to reference A. Limpichaipanit, S. Somwan, A. Ngamjarurojan, Dielectric properties of PFN–PZT composites: From relaxor to normal ferroelectric behavior. Ceram. Int. 44, 14797–14802 (2018)CrossRef A. Limpichaipanit, S. Somwan, A. Ngamjarurojan, Dielectric properties of PFN–PZT composites: From relaxor to normal ferroelectric behavior. Ceram. Int. 44, 14797–14802 (2018)CrossRef
7.
go back to reference L. Li, M. Xu, Q. Zhang, P. Chen, N. Wang, D. Xiong, B. Peng, L. Liu, Electrocaloric effect in La doped BNT-6BT relaxor ferroelectric ceramics. Ceram. Int. 44, 343–350 (2018)CrossRef L. Li, M. Xu, Q. Zhang, P. Chen, N. Wang, D. Xiong, B. Peng, L. Liu, Electrocaloric effect in La doped BNT-6BT relaxor ferroelectric ceramics. Ceram. Int. 44, 343–350 (2018)CrossRef
8.
go back to reference G.K. Choi, J.R. Kim, S.H. Yoon, K.S. Hong, Microwave dielectric properties of scheelite (A = Ca, Sr, Ba) and wolframite (A = Mg, Zn, Mn) AMoO4 compounds. J. Eur. Cerem. Soc. 27, 3063–3067 (2007)CrossRef G.K. Choi, J.R. Kim, S.H. Yoon, K.S. Hong, Microwave dielectric properties of scheelite (A = Ca, Sr, Ba) and wolframite (A = Mg, Zn, Mn) AMoO4 compounds. J. Eur. Cerem. Soc. 27, 3063–3067 (2007)CrossRef
9.
go back to reference B. Wang, Y.B. Pu, N. Xu, H.D. Wu, K. Chen, Dielectric properties of barium titanate–molybdenum composite. Ceram. Int. 38S, S37–S40 (2012)CrossRef B. Wang, Y.B. Pu, N. Xu, H.D. Wu, K. Chen, Dielectric properties of barium titanate–molybdenum composite. Ceram. Int. 38S, S37–S40 (2012)CrossRef
10.
go back to reference R.A. Bharati, R.A. Singh, B.M. Wanklyn, On electrical transport in CoWO4 single crystals. J. Mater. Sci. 16, 775–779 (1981)CrossRef R.A. Bharati, R.A. Singh, B.M. Wanklyn, On electrical transport in CoWO4 single crystals. J. Mater. Sci. 16, 775–779 (1981)CrossRef
11.
go back to reference S. Chen, G. Yang, Y. Jia, H. Zheng, Facile synthesis of CoWO4 nanosheet arrays grown on nickel foam substrates for asymmetric supercapacitors. ChemElectroChem. 3, 1490–1496 (2016)CrossRef S. Chen, G. Yang, Y. Jia, H. Zheng, Facile synthesis of CoWO4 nanosheet arrays grown on nickel foam substrates for asymmetric supercapacitors. ChemElectroChem. 3, 1490–1496 (2016)CrossRef
12.
go back to reference C. Ling, L.Q. Zhou, H. Jia, First-principles study of crystalline CoWO4 as oxygen evolution reaction catalyst. RSC Adv. 4, 24692 (2014)CrossRef C. Ling, L.Q. Zhou, H. Jia, First-principles study of crystalline CoWO4 as oxygen evolution reaction catalyst. RSC Adv. 4, 24692 (2014)CrossRef
13.
go back to reference B. Zhang, L. Li, Microstructure and microwave dielectric properties of CuO-modified CoWO4 ceramics. J. Mater. Sci. Mater. Electron. 28, 3523–3529 (2017)CrossRef B. Zhang, L. Li, Microstructure and microwave dielectric properties of CuO-modified CoWO4 ceramics. J. Mater. Sci. Mater. Electron. 28, 3523–3529 (2017)CrossRef
14.
go back to reference P.K. Pandey, N.S. Bhave, R.B. Kharat, Characterization of spray deposited CoWO4 thin films for photovoltaic electrochemical studies. J. Mater. Sci. 42, 7927–7933 (2007)CrossRef P.K. Pandey, N.S. Bhave, R.B. Kharat, Characterization of spray deposited CoWO4 thin films for photovoltaic electrochemical studies. J. Mater. Sci. 42, 7927–7933 (2007)CrossRef
15.
go back to reference T. You, G. Cao, X. Song, C. Fan, W. Zhao, Z. Yin, S. Sun, Alcohol–thermal synthesis of flowerlike hollow cobalt tungstate nanostructures. Mater. Lett. 62, 1169–1172 (2008)CrossRef T. You, G. Cao, X. Song, C. Fan, W. Zhao, Z. Yin, S. Sun, Alcohol–thermal synthesis of flowerlike hollow cobalt tungstate nanostructures. Mater. Lett. 62, 1169–1172 (2008)CrossRef
16.
go back to reference S. Rajagopal, D. Nataraj, O.Y. Khyzhun, Y. Djaoued, J. Robichaud, D. Mangalaraj, Hydrothermal synthesis and electronic properties of FeWO4 and CoWO4 nanostructures. J. Alloys Compd. 493, 340–345 (2010)CrossRef S. Rajagopal, D. Nataraj, O.Y. Khyzhun, Y. Djaoued, J. Robichaud, D. Mangalaraj, Hydrothermal synthesis and electronic properties of FeWO4 and CoWO4 nanostructures. J. Alloys Compd. 493, 340–345 (2010)CrossRef
17.
go back to reference Z. Song, J. Ma, H. Sun, Y. Sun, J. Fang, Z. Liu, C. Gao, Y. Liu, J. Zhao, Low-temperature molten salt synthesis and characterization of CoWO4 nano-particles. Mater. Sci. Eng. B 163, 62–65 (2009)CrossRef Z. Song, J. Ma, H. Sun, Y. Sun, J. Fang, Z. Liu, C. Gao, Y. Liu, J. Zhao, Low-temperature molten salt synthesis and characterization of CoWO4 nano-particles. Mater. Sci. Eng. B 163, 62–65 (2009)CrossRef
18.
go back to reference J. Ungelenk, M. Speldrich, R. Dronskowski, C. Feldmann, Polyol-mediated low-temperature synthesis of crystalline tungstate nanoparticles MWO4 (M = Mn, Fe Co, Ni, Cu, Zn). Solid State Sci. 31, 62–69 (2014)CrossRef J. Ungelenk, M. Speldrich, R. Dronskowski, C. Feldmann, Polyol-mediated low-temperature synthesis of crystalline tungstate nanoparticles MWO4 (M = Mn, Fe Co, Ni, Cu, Zn). Solid State Sci. 31, 62–69 (2014)CrossRef
19.
go back to reference S. Thongtem, S. Wannapop, T. Thongtem, Characterization of CoWO4 nano-particles produced using the spray pyrolysis. Ceram. Int. 35, 2087–2091 (2009)CrossRef S. Thongtem, S. Wannapop, T. Thongtem, Characterization of CoWO4 nano-particles produced using the spray pyrolysis. Ceram. Int. 35, 2087–2091 (2009)CrossRef
20.
go back to reference M. Jeyakanthan, U. Subramanian, R.B. Tangsali, Enhanced photoluminescence of CoWO4 in CoWO4/PbWO4 nanocomposites. J. Mater. Sci. Mater. Electron. 29, 1914–1924 (2018)CrossRef M. Jeyakanthan, U. Subramanian, R.B. Tangsali, Enhanced photoluminescence of CoWO4 in CoWO4/PbWO4 nanocomposites. J. Mater. Sci. Mater. Electron. 29, 1914–1924 (2018)CrossRef
21.
go back to reference R.A. Cowley, S.N. Gvasaliya, S.G. Lushnikov, B. Roessli, G.M. Rotaru, Relaxing with relaxors: a review of relaxor ferroelectrics. Adv. Phys. 60, 229–327 (2011)CrossRef R.A. Cowley, S.N. Gvasaliya, S.G. Lushnikov, B. Roessli, G.M. Rotaru, Relaxing with relaxors: a review of relaxor ferroelectrics. Adv. Phys. 60, 229–327 (2011)CrossRef
22.
go back to reference L.E. Cross, Relaxor ferroelectrics: an overview. Ferroelectrics 151, 305–320 (1994)CrossRef L.E. Cross, Relaxor ferroelectrics: an overview. Ferroelectrics 151, 305–320 (1994)CrossRef
23.
go back to reference L.E. Cross, Relaxor ferroelectrics. In: Piezoelectricity. Springer Series in Materials Science, (Springer, Berlin, 2008), p. 131 L.E. Cross, Relaxor ferroelectrics. In: Piezoelectricity. Springer Series in Materials Science, (Springer, Berlin, 2008), p. 131
24.
go back to reference T. Maiti, R. Guo, A.S. Bhalla, Ferroelectric relaxor behaviour in Ba(ZrxTi1− x)O3:MgO composites. J. Phys. D Appl. Phys. 40, 4355 (2007)CrossRef T. Maiti, R. Guo, A.S. Bhalla, Ferroelectric relaxor behaviour in Ba(ZrxTi1− x)O3:MgO composites. J. Phys. D Appl. Phys. 40, 4355 (2007)CrossRef
25.
go back to reference E.C. Cristina, M.N. Alexandra, V.P. Mihai, A. Mirela, T. Sorin, S. Giorgio, G. Carmen, M. Liliana, Ferroelectric and dielectric properties of ferrite-ferroelectric ceramic composites. J. Appl. Phys. 113, 074103 (2013)CrossRef E.C. Cristina, M.N. Alexandra, V.P. Mihai, A. Mirela, T. Sorin, S. Giorgio, G. Carmen, M. Liliana, Ferroelectric and dielectric properties of ferrite-ferroelectric ceramic composites. J. Appl. Phys. 113, 074103 (2013)CrossRef
26.
go back to reference B. Asbani, Y. Gagou, M. Trcek, J.L. Dellis, M. Amjoud, A. Lahmar, D. Mezzane, Z. Kutnjak, E.L. Marssi, Dielectric permittivity enhancement and large electrocaloric effect in the lead free (Ba0.8Ca0.2)1−xLa2x/3TiO3 ferroelectric ceramics. J. Alloys Compd. 730, 501–508 (2018)CrossRef B. Asbani, Y. Gagou, M. Trcek, J.L. Dellis, M. Amjoud, A. Lahmar, D. Mezzane, Z. Kutnjak, E.L. Marssi, Dielectric permittivity enhancement and large electrocaloric effect in the lead free (Ba0.8Ca0.2)1−xLa2x/3TiO3 ferroelectric ceramics. J. Alloys Compd. 730, 501–508 (2018)CrossRef
27.
go back to reference Z. Wang, Y.J. Xiao, T. Wang, Q.L. Wu, Enhanced dielectric properties of tungsten bronze Ba6FeNb9O30 prepared by microwave hydrothermal method. J. Alloys Compd. 740, 1077–1085 (2018)CrossRef Z. Wang, Y.J. Xiao, T. Wang, Q.L. Wu, Enhanced dielectric properties of tungsten bronze Ba6FeNb9O30 prepared by microwave hydrothermal method. J. Alloys Compd. 740, 1077–1085 (2018)CrossRef
28.
go back to reference P.N. Pertsev, R.V. Gainutdinov, Y.V. Bodnarchuk, T.R. Volk, Blockage of domain growth by nanoscale heterogeneities in a relaxor ferroelectric Sr0.61Ba0.39Nb2O6. J. Appl. Phys. 117, 03410 (2015)CrossRef P.N. Pertsev, R.V. Gainutdinov, Y.V. Bodnarchuk, T.R. Volk, Blockage of domain growth by nanoscale heterogeneities in a relaxor ferroelectric Sr0.61Ba0.39Nb2O6. J. Appl. Phys. 117, 03410 (2015)CrossRef
29.
go back to reference R.B. Hilborn Jr., Maxwell Wagner polarization in sintered compacts of ferric oxide. J. Appl. Phy. 36, 1553 (1965)CrossRef R.B. Hilborn Jr., Maxwell Wagner polarization in sintered compacts of ferric oxide. J. Appl. Phy. 36, 1553 (1965)CrossRef
30.
go back to reference W.R. Agami, Effect of neodymium substitution on the electric and dielectric properties of Mn-Ni-Zn ferrite. Physica B 534, 17–21 (2018)CrossRef W.R. Agami, Effect of neodymium substitution on the electric and dielectric properties of Mn-Ni-Zn ferrite. Physica B 534, 17–21 (2018)CrossRef
31.
go back to reference E. Birks, M. Dunce, R. Ignatans, A. Plaude, M. Antonova, K. Kundzins, A. Sternberg, Structure and dielectric properties of Na0.5Bi0.5TiO3-CaTiO3 solid solutions. J. Appl. Phys. 119, 074102 (2016)CrossRef E. Birks, M. Dunce, R. Ignatans, A. Plaude, M. Antonova, K. Kundzins, A. Sternberg, Structure and dielectric properties of Na0.5Bi0.5TiO3-CaTiO3 solid solutions. J. Appl. Phys. 119, 074102 (2016)CrossRef
32.
go back to reference T. Ahmad, H.L. Irfan, Citrate precursor synthesis and multifunctional properties of YCrO3 nanoparticles. New J. Chem. 40, 3216–3224 (2016)CrossRef T. Ahmad, H.L. Irfan, Citrate precursor synthesis and multifunctional properties of YCrO3 nanoparticles. New J. Chem. 40, 3216–3224 (2016)CrossRef
33.
go back to reference M. Tufiqjamil, J. Ahmad, M. Saleem, S.M. Ramay, Phonons lattice dynamics and transport properties of multiferroic LaFeO3. J. Ovonic Res. 12, 113–120 (2016) M. Tufiqjamil, J. Ahmad, M. Saleem, S.M. Ramay, Phonons lattice dynamics and transport properties of multiferroic LaFeO3. J. Ovonic Res. 12, 113–120 (2016)
34.
go back to reference P. Nayak, T. Badapanda, A.K. Singha, P. Simanchalo, An approach for correlating the structural and electrical properties of Zr4+ modified SrBi4Ti4O15/SBT ceramic. RSC Adv. 7, 16319 (2017)CrossRef P. Nayak, T. Badapanda, A.K. Singha, P. Simanchalo, An approach for correlating the structural and electrical properties of Zr4+ modified SrBi4Ti4O15/SBT ceramic. RSC Adv. 7, 16319 (2017)CrossRef
35.
go back to reference Samy A. Rahman, W.R. Agami, M.M. Eltabey, Frequency, temperature and composition dependence of dielectric properties of Nd3+ substituted Cu-Zn ferrites. Life Sci. J. 9, 1630–1634 (2012) Samy A. Rahman, W.R. Agami, M.M. Eltabey, Frequency, temperature and composition dependence of dielectric properties of Nd3+ substituted Cu-Zn ferrites. Life Sci. J. 9, 1630–1634 (2012)
36.
go back to reference N. Ortega, A. Kumar, P. Bhattacharya, S.B. Majumder, R.S. Katiyar, Impedance spectroscopy of multiferroic PbZrxTi1−xO3/CoFe2O4 layered thin films. Phys. Rev. B. 77, 014111 (2008)CrossRef N. Ortega, A. Kumar, P. Bhattacharya, S.B. Majumder, R.S. Katiyar, Impedance spectroscopy of multiferroic PbZrxTi1−xO3/CoFe2O4 layered thin films. Phys. Rev. B. 77, 014111 (2008)CrossRef
37.
go back to reference C.C. Wang, S.X. Dou, Pseudo-relaxor behaviour induced by Maxwell_Wagner relaxation. Solid State Commun. 149, 2017–2020 (2009)CrossRef C.C. Wang, S.X. Dou, Pseudo-relaxor behaviour induced by Maxwell_Wagner relaxation. Solid State Commun. 149, 2017–2020 (2009)CrossRef
38.
go back to reference C.C. Wang, L.W. Zhang, Oxygen-vacancy-related dielectric anomaly in CaCu3Ti4O12: post-sintering annealing studies. Phys. Rev. B. 74, 024106 (2006)CrossRef C.C. Wang, L.W. Zhang, Oxygen-vacancy-related dielectric anomaly in CaCu3Ti4O12: post-sintering annealing studies. Phys. Rev. B. 74, 024106 (2006)CrossRef
39.
go back to reference C.J. Huang, K. Li, S.Y. Wu, X.L. Zhu, X.M. Chen, Variation of ferroelectric hysteresis loop with temperature in (SrxBa1−x)Nb2O6 unfilled tungsten bronze ceramics. J. Materiomics. 1, 146–152 (2015)CrossRef C.J. Huang, K. Li, S.Y. Wu, X.L. Zhu, X.M. Chen, Variation of ferroelectric hysteresis loop with temperature in (SrxBa1−x)Nb2O6 unfilled tungsten bronze ceramics. J. Materiomics. 1, 146–152 (2015)CrossRef
40.
go back to reference D.I. Woodward, R. Beanland, AgNb7O18: an ergodic relaxor ferroelectric. Inorg. Chem. 53, 8941–8948 (2014)CrossRef D.I. Woodward, R. Beanland, AgNb7O18: an ergodic relaxor ferroelectric. Inorg. Chem. 53, 8941–8948 (2014)CrossRef
41.
go back to reference P. Balaji, P. Mandal, Anithakumari, S. Nigam, C. Majumder, M. Mohapatra, A.K. Tyagi, Enhancement of dielectric constant in a niobium doped titania system: an experimental and theoretical study. New J. Chem. 40, 9526–9536 (2016)CrossRef P. Balaji, P. Mandal, Anithakumari, S. Nigam, C. Majumder, M. Mohapatra, A.K. Tyagi, Enhancement of dielectric constant in a niobium doped titania system: an experimental and theoretical study. New J. Chem. 40, 9526–9536 (2016)CrossRef
42.
go back to reference S.D. Mardolkar, A.V. Salker, Efficiently synthesized Co doped Cu3TeO6 accounted for its anomalous behaviour in electronic properties. New J. Chem. 41, 13974–13982 (2017)CrossRef S.D. Mardolkar, A.V. Salker, Efficiently synthesized Co doped Cu3TeO6 accounted for its anomalous behaviour in electronic properties. New J. Chem. 41, 13974–13982 (2017)CrossRef
43.
go back to reference F. Orlandi, L. Righi, R. Cabassi, D. Delmonte, C. Pernechele, F. Bolzoni, F. Mezzadri, M. Solzi, M. Merlini, G. Calestani, Structural and electric evidence of ferrielectric state in Pb2MnWO6 double perovskite system. Inorg. Chem. 53, 10283–10290 (2014)CrossRef F. Orlandi, L. Righi, R. Cabassi, D. Delmonte, C. Pernechele, F. Bolzoni, F. Mezzadri, M. Solzi, M. Merlini, G. Calestani, Structural and electric evidence of ferrielectric state in Pb2MnWO6 double perovskite system. Inorg. Chem. 53, 10283–10290 (2014)CrossRef
44.
go back to reference Y. Matsumoto, T. Sasaki, J. Hombo, A new preparation method of LaCo0.3 perovskite using electrochemical oxidation. Inorg. Chem. 31, 738–741 (1992)CrossRef Y. Matsumoto, T. Sasaki, J. Hombo, A new preparation method of LaCo0.3 perovskite using electrochemical oxidation. Inorg. Chem. 31, 738–741 (1992)CrossRef
45.
go back to reference N. Jianrong, L. Wei, D. Hongxing, H. Hong, Z. Xuehong, L. Peiheng, Preparation and characterization of highly active nanosized strontium-doped lanthanum cobaltate catalysts with high surface areas. Chin. Sci. Bull. 51, 1673–1681 (2006)CrossRef N. Jianrong, L. Wei, D. Hongxing, H. Hong, Z. Xuehong, L. Peiheng, Preparation and characterization of highly active nanosized strontium-doped lanthanum cobaltate catalysts with high surface areas. Chin. Sci. Bull. 51, 1673–1681 (2006)CrossRef
46.
go back to reference E.S. Kim, C.J. Jeon, P.G. Clem, Effects of crystal structure on the microwave dielectric properties of ABO4 (A = Ni, Mg, Zn and B = Mo, W) ceramics. J. Am. Ceram. Soc. 95, 2934–2938 (2012)CrossRef E.S. Kim, C.J. Jeon, P.G. Clem, Effects of crystal structure on the microwave dielectric properties of ABO4 (A = Ni, Mg, Zn and B = Mo, W) ceramics. J. Am. Ceram. Soc. 95, 2934–2938 (2012)CrossRef
47.
go back to reference S. Mukherjee, C.H. Chen, C.C. Chou, K.F. Tseng, B.K. Chaudhuri, H.D. Yang, Colossal dielectric and magnetodielectric effect in Er2O3 nanoparticles embedded in a SiO2 glass matrix. Phys. Rev. B. 82, 104107 (2010)CrossRef S. Mukherjee, C.H. Chen, C.C. Chou, K.F. Tseng, B.K. Chaudhuri, H.D. Yang, Colossal dielectric and magnetodielectric effect in Er2O3 nanoparticles embedded in a SiO2 glass matrix. Phys. Rev. B. 82, 104107 (2010)CrossRef
48.
go back to reference A.V. Kalgin, S.A. Gridnev, Crossover from ordinary to relaxor ferroelectric state in particulate magnetoelectric composites (x)Mn0.4Zn0.6Fe2O4–(1−x)PbZr0.53Ti0.47O3. Ferroelectrics 501, 100–108 (2016)CrossRef A.V. Kalgin, S.A. Gridnev, Crossover from ordinary to relaxor ferroelectric state in particulate magnetoelectric composites (x)Mn0.4Zn0.6Fe2O4–(1−x)PbZr0.53Ti0.47O3. Ferroelectrics 501, 100–108 (2016)CrossRef
49.
go back to reference I.W. Chen, Structural origin of relaxor ferroelectrics—revisited. J. Phys. Chem. Solids. 61, 197–208 (2000)CrossRef I.W. Chen, Structural origin of relaxor ferroelectrics—revisited. J. Phys. Chem. Solids. 61, 197–208 (2000)CrossRef
50.
go back to reference Biljana Stojanovic, Magnetic, Ferroelectric and Multiferroic Metal Oxides, 1st edn. (Elsevier, Amsterdam, 2018), pp. 233–245 Biljana Stojanovic, Magnetic, Ferroelectric and Multiferroic Metal Oxides, 1st edn. (Elsevier, Amsterdam, 2018), pp. 233–245
51.
go back to reference R. Wordenweber, J. Schwarzkopf, E. Hollmann, A. Duk, B. Cai, Impact of compressive in-plane strain on the ferroelectric properties of epitaxial NaNbO3 films on (110) NdGaO3. Appl. Phys. Lett. 103, 132908 (2013)CrossRef R. Wordenweber, J. Schwarzkopf, E. Hollmann, A. Duk, B. Cai, Impact of compressive in-plane strain on the ferroelectric properties of epitaxial NaNbO3 films on (110) NdGaO3. Appl. Phys. Lett. 103, 132908 (2013)CrossRef
Metadata
Title
Relaxor like colossal dielectric constant in CoWO4 and CoWO4/PbWO4 nanocomposites
Authors
M. Jeyakanthan
Uma Subramanian
R. B. Tangsali
Roshan Jose
K. Venkata Saravanan
Publication date
11-07-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 15/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01837-5

Other articles of this Issue 15/2019

Journal of Materials Science: Materials in Electronics 15/2019 Go to the issue