Skip to main content
Top
Published in: Structural and Multidisciplinary Optimization 4/2017

17-10-2016 | REVIEW ARTICLE

Reliability-based design optimization applied to structures submitted to random fatigue loads

Authors: Younès Aoues, Emmanuel Pagnacco, Didier Lemosse, Leila Khalij

Published in: Structural and Multidisciplinary Optimization | Issue 4/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The reliability-based design optimization (RBDO) aims to find the most balanced design through a compromise between cost and safety when uncertainties affecting the system are considered. This strategy involves the evaluation of probabilistic constraints performed by the reliability analysis, leading to an expensive computational effort in order to solve the problem. For this reason, it is not trivial to take into account the high cycle fatigue in a RBDO method. This work deals with this problem, considering stationary Gaussian random load processes and the Sines multiaxial fatigue criterion. The efficiency is achieved through spectral tools related to the fatigue analysis. Therefore, the probabilistic constraints of the fatigue life in the RBDO problem are transformed in the frequency domain. The limit state function of the reliability analysis is defined by the mechanical component endurance submitted to random loads. The numerical application demonstrates the interest and the effectiveness of our proposal.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Knowing that ∀ x ∈ [0, L], the Dirac function δ verifies the following conditions:
$$ {\displaystyle {\int}_{-\infty}^{\infty }f(x)\delta \left(x-X\right)dx}={\displaystyle {\int}_0^Lf(x)\delta \left(x-X\right)dx}=\left\{\begin{array}{c}\hfill f(X)\kern1em if\kern1em X\kern0.5em \in \left]0,L\right[\hfill \\ {}\hfill \frac{1}{2}f(X)\kern1.5em if\kern0.5em X=0\kern0.75em or\kern0.5em X=L\hfill \end{array}\right. $$
 
Literature
go back to reference Adasooriya ND (2016) Fatigue reliability assessment of ageing railway truss bridges: rationality of probabilistic stress-life approach. Case Stud Struct Eng 6:1–10CrossRef Adasooriya ND (2016) Fatigue reliability assessment of ageing railway truss bridges: rationality of probabilistic stress-life approach. Case Stud Struct Eng 6:1–10CrossRef
go back to reference Aoues Y, Chateauneuf A (2010) Benchmark study of numerical methods for reliability-based design optimization. Struct Multidisc Optim 41(2):277–294MathSciNetCrossRefMATH Aoues Y, Chateauneuf A (2010) Benchmark study of numerical methods for reliability-based design optimization. Struct Multidisc Optim 41(2):277–294MathSciNetCrossRefMATH
go back to reference Beck AT, Santana Gomes WJ (2012) A comparison of deterministic, reliability-based and risk-based structural optimization under uncertainty. Prob Eng Mech 28:18–29CrossRef Beck AT, Santana Gomes WJ (2012) A comparison of deterministic, reliability-based and risk-based structural optimization under uncertainty. Prob Eng Mech 28:18–29CrossRef
go back to reference Chateauneuf A (2008) Principles of reliability-based design optimization. In: Structural design optimization considering uncertainties. Taylor & Francis Chateauneuf A (2008) Principles of reliability-based design optimization. In: Structural design optimization considering uncertainties. Taylor & Francis
go back to reference Chew K-H, Tai K, Ng EYK, Muskulus M (2016) Analytical gradient-based optimization of offshore wind turbine substructures under fatigue and extreme loads. Marine Struct 47:23–41CrossRef Chew K-H, Tai K, Ng EYK, Muskulus M (2016) Analytical gradient-based optimization of offshore wind turbine substructures under fatigue and extreme loads. Marine Struct 47:23–41CrossRef
go back to reference Choi KK, Tang J, Hardee E, Youn B (2005) Application of reliability-based design optimization to durability of military vehicles. SAE Tech Pap 2005-01-0530 Choi KK, Tang J, Hardee E, Youn B (2005) Application of reliability-based design optimization to durability of military vehicles. SAE Tech Pap 2005-01-0530
go back to reference Crandall SH, Mark D (1963) Random vibration in mechanical systems. Academic Press Crandall SH, Mark D (1963) Random vibration in mechanical systems. Academic Press
go back to reference Enevoldsen I, Sørensen JD (1994) Reliability-based optimization in structural engineering. Struct Saf 15(3):169–196CrossRef Enevoldsen I, Sørensen JD (1994) Reliability-based optimization in structural engineering. Struct Saf 15(3):169–196CrossRef
go back to reference Epremian E, Mehl RF (1952) Investigation of statistical nature of fatigue properties, NACA Technical Note 2719, June 1952 Epremian E, Mehl RF (1952) Investigation of statistical nature of fatigue properties, NACA Technical Note 2719, June 1952
go back to reference Géradin M, Rixen DJ (1997) Mechanical vibrations: theory and applications to structural dynamics. J. Wiley & Sons Ltd Géradin M, Rixen DJ (1997) Mechanical vibrations: theory and applications to structural dynamics. J. Wiley & Sons Ltd
go back to reference Grujicic M, Arakere G, Bell WC, Marvi H, Yalavarthy HV, Pandurangan B, Haque I, Fadel GM (2010) Reliability-based design optimization for durability of ground vehicle suspension system components. J Mater Eng Perform 19(3):301–313CrossRef Grujicic M, Arakere G, Bell WC, Marvi H, Yalavarthy HV, Pandurangan B, Haque I, Fadel GM (2010) Reliability-based design optimization for durability of ground vehicle suspension system components. J Mater Eng Perform 19(3):301–313CrossRef
go back to reference Hasofer AM, Lind NC (1974) An exact and invariant first order reliability format. J Eng Mech ASCE 100:111–121 Hasofer AM, Lind NC (1974) An exact and invariant first order reliability format. J Eng Mech ASCE 100:111–121
go back to reference Holdorf Lopez R, Teófilo BA (2012) Reliability-based design optimization strategies based on FORM: a review. J Braz Soc Mech Sci Eng 34(4):506–514CrossRef Holdorf Lopez R, Teófilo BA (2012) Reliability-based design optimization strategies based on FORM: a review. J Braz Soc Mech Sci Eng 34(4):506–514CrossRef
go back to reference Hu W, Choi KK, Zhupanska O, Buchholz JH (2016) Integrating variable wind load, aerodynamic, and structural analyses towards accurate fatigue life prediction in composite wind turbine blades. Structural and Multidisciplinary Optimization 53(3):375–394 Hu W, Choi KK, Zhupanska O, Buchholz JH (2016) Integrating variable wind load, aerodynamic, and structural analyses towards accurate fatigue life prediction in composite wind turbine blades. Structural and Multidisciplinary Optimization 53(3):375–394
go back to reference Hu W, Choi KK, Cho H (2016) Reliability-based design optimization of wind turbine blades for fatigue life under dynamic wind load uncertainty. Struct Multidisc Optim. doi:10.1007/s00158-016-1462-x Hu W, Choi KK, Cho H (2016) Reliability-based design optimization of wind turbine blades for fatigue life under dynamic wind load uncertainty. Struct Multidisc Optim. doi:10.​1007/​s00158-016-1462-x
go back to reference Huang W, Garbatov Y, Soares Guedes C (2014) Fatigue reliability of a web frame subjected to random non-uniform corrosion wastage. Struct Safe 48:51–62CrossRef Huang W, Garbatov Y, Soares Guedes C (2014) Fatigue reliability of a web frame subjected to random non-uniform corrosion wastage. Struct Safe 48:51–62CrossRef
go back to reference Ippolito R, Hack M, Donders S, Hermans L, Tzannetakis N, Vandepitte D (2009) Improving the fatigue life of a vehicle knucklewith a reliability-based design optimization approach. J Stat Plann Inf 139(5):1619–1632CrossRefMATH Ippolito R, Hack M, Donders S, Hermans L, Tzannetakis N, Vandepitte D (2009) Improving the fatigue life of a vehicle knucklewith a reliability-based design optimization approach. J Stat Plann Inf 139(5):1619–1632CrossRefMATH
go back to reference JCSS. Probabilistic model code: part 1 - basis of design. Joint committee on structural safety. JCSS-OSTL/DIA/VROU-10-11-2000 JCSS. Probabilistic model code: part 1 - basis of design. Joint committee on structural safety. JCSS-OSTL/DIA/VROU-10-11-2000
go back to reference Karadeniz H (2001) Uncertainty modeling in the fatigue reliability calculation of offshore structures. Reliab Eng Syst Safe 74(3):323–335MathSciNetCrossRef Karadeniz H (2001) Uncertainty modeling in the fatigue reliability calculation of offshore structures. Reliab Eng Syst Safe 74(3):323–335MathSciNetCrossRef
go back to reference Karadeniz H, Toğan V, Vrouwenvelder T (2009) An integrated reliability-based design optimization of offshore towers. Reliab Eng Syst Safe 94(10):1510–1516CrossRef Karadeniz H, Toğan V, Vrouwenvelder T (2009) An integrated reliability-based design optimization of offshore towers. Reliab Eng Syst Safe 94(10):1510–1516CrossRef
go back to reference Kim DH, Lee SG (2015) Reliability analysis of offshore wind turbine support structures under extreme ocean environmental loads. Renew Energy 79:161–166CrossRef Kim DH, Lee SG (2015) Reliability analysis of offshore wind turbine support structures under extreme ocean environmental loads. Renew Energy 79:161–166CrossRef
go back to reference Krejsa M, Janas P, Krejsa V, Kala Z, Seitl S (2016) DOProC-based reliability assessment of steel structures exposed to fatigue. Persp Sci 7:228–235CrossRef Krejsa M, Janas P, Krejsa V, Kala Z, Seitl S (2016) DOProC-based reliability assessment of steel structures exposed to fatigue. Persp Sci 7:228–235CrossRef
go back to reference Lambert S, Pagnacco E, Khalij L (2010) A probabilistic model for the fatigue reliability of structures under random loadings with phase shift effects. Int J Fatig 32:463–474CrossRef Lambert S, Pagnacco E, Khalij L (2010) A probabilistic model for the fatigue reliability of structures under random loadings with phase shift effects. Int J Fatig 32:463–474CrossRef
go back to reference Lee OS, Kim DH (2007) Reliability of fatigue damaged structure using FORM, SORM and fatigue model. Proceedings of the World Congress on Engineering. Vol II, July 2–4, 2007, London, UK Lee OS, Kim DH (2007) Reliability of fatigue damaged structure using FORM, SORM and fatigue model. Proceedings of the World Congress on Engineering. Vol II, July 2–4, 2007, London, UK
go back to reference Liu PL, Der Kiureghian A (1991) Optimization algorithms for structural reliability. Struct Saf 9(3):161–177CrossRef Liu PL, Der Kiureghian A (1991) Optimization algorithms for structural reliability. Struct Saf 9(3):161–177CrossRef
go back to reference Liu Y, Mahadevan S (2009) Efficient methods for time-dependent fatigue reliability analysis. AIAA J 47(3):494–504CrossRef Liu Y, Mahadevan S (2009) Efficient methods for time-dependent fatigue reliability analysis. AIAA J 47(3):494–504CrossRef
go back to reference Liu J, Zenner H (2001) Fatigue limit of ductile metals under multiaxial loading. In: Carpinteri A, de Freitas M, Spagnoli A (eds) Sixth international conference on biaxial/multiaxial fatigue and fracture, ESIS 31. Elsevier, Lisbon, pp 147–163 Liu J, Zenner H (2001) Fatigue limit of ductile metals under multiaxial loading. In: Carpinteri A, de Freitas M, Spagnoli A (eds) Sixth international conference on biaxial/multiaxial fatigue and fracture, ESIS 31. Elsevier, Lisbon, pp 147–163
go back to reference MATLAB and Optimization Toolbox Release (2012b) The MathWorks, Inc., Natick, Massachusetts, United States MATLAB and Optimization Toolbox Release (2012b) The MathWorks, Inc., Natick, Massachusetts, United States
go back to reference Pagnacco E, Lambert S, Khalij L, Rade DA (2012) Design optimisation of linear structures subjected to dynamic random loads with respect to fatigue life. Int J Fatig 43:168–177CrossRef Pagnacco E, Lambert S, Khalij L, Rade DA (2012) Design optimisation of linear structures subjected to dynamic random loads with respect to fatigue life. Int J Fatig 43:168–177CrossRef
go back to reference Papadopoulos IV, Davoli P, Gorla C, Filippini M, Bernasconi A (1997) A comparative study of multiaxial high-cycle fatigue criteria for metals. Int J Fatig 19:219–235CrossRef Papadopoulos IV, Davoli P, Gorla C, Filippini M, Bernasconi A (1997) A comparative study of multiaxial high-cycle fatigue criteria for metals. Int J Fatig 19:219–235CrossRef
go back to reference Preumont A (1994) Random vibrations and spectral analysis. Solid mechanics and its applications. Kluwer Academic publisher Preumont A (1994) Random vibrations and spectral analysis. Solid mechanics and its applications. Kluwer Academic publisher
go back to reference Preumont A, Piefort V (1994) Predicting random high-cycle fatigue life with finite elements. J Vibrat Acoust 116(2):245–248CrossRef Preumont A, Piefort V (1994) Predicting random high-cycle fatigue life with finite elements. J Vibrat Acoust 116(2):245–248CrossRef
go back to reference Rashki M, Miri M, Moghaddam MA (2014) A simulation-based method for reliability based design optimization problems with highly nonlinear constraints. Automat Construct 47:24–36CrossRef Rashki M, Miri M, Moghaddam MA (2014) A simulation-based method for reliability based design optimization problems with highly nonlinear constraints. Automat Construct 47:24–36CrossRef
go back to reference Royset JO, Polak E (2004) Reliability-based optimal design using sample average approximations. Prob Eng Mech 19:331–343CrossRefMATH Royset JO, Polak E (2004) Reliability-based optimal design using sample average approximations. Prob Eng Mech 19:331–343CrossRefMATH
go back to reference Saad L, Aissani A, Chateauneuf A, Raphael W (2016) Reliability-based optimization of direct and indirect LCC of RC bridge elements under coupled fatigue-corrosion deterioration processes. Eng Fail Anal 59:570–587CrossRef Saad L, Aissani A, Chateauneuf A, Raphael W (2016) Reliability-based optimization of direct and indirect LCC of RC bridge elements under coupled fatigue-corrosion deterioration processes. Eng Fail Anal 59:570–587CrossRef
go back to reference Sines G (1959) Behaviour of metals under complex static and alternating stress. Metal fatigue. McGraw-Hill Sines G (1959) Behaviour of metals under complex static and alternating stress. Metal fatigue. McGraw-Hill
go back to reference Sørensen JD, Toft HS (2010) Probabilistic design of wind turbines. Energies 3:241–257CrossRef Sørensen JD, Toft HS (2010) Probabilistic design of wind turbines. Energies 3:241–257CrossRef
go back to reference Taflanidis A, Beck J (2008) Stochastic subset optimization for optimal reliability problems. Prob Eng Mech 23(2–3):324–338CrossRef Taflanidis A, Beck J (2008) Stochastic subset optimization for optimal reliability problems. Prob Eng Mech 23(2–3):324–338CrossRef
go back to reference Tang J, Zhao J (1995) A practical approach for predicting fatigue reliability under random cyclic loading. Reliab Eng Syst Safe 50(1):7–15CrossRef Tang J, Zhao J (1995) A practical approach for predicting fatigue reliability under random cyclic loading. Reliab Eng Syst Safe 50(1):7–15CrossRef
go back to reference Valdebenito MA, Schuëller GI (2010) A survey on approaches for reliability-based optimization. Struct Multidisc Optim 42:645–663MathSciNetCrossRefMATH Valdebenito MA, Schuëller GI (2010) A survey on approaches for reliability-based optimization. Struct Multidisc Optim 42:645–663MathSciNetCrossRefMATH
go back to reference Weber B, Labesse-Jied F, Robert JL (2001) Comparison of multiaxial high cycle fatigue criteria and their application to fatigue design of structures. In: Carpinteri A, de Freitas M, Spagnoli A (eds) Sixth international conference on biaxial/ multiaxial Fatigue and Fracture, ESIS 31. Elsevier, Lisbon, pp 195–202 Weber B, Labesse-Jied F, Robert JL (2001) Comparison of multiaxial high cycle fatigue criteria and their application to fatigue design of structures. In: Carpinteri A, de Freitas M, Spagnoli A (eds) Sixth international conference on biaxial/ multiaxial Fatigue and Fracture, ESIS 31. Elsevier, Lisbon, pp 195–202
go back to reference Wu B, Ferraton L, Robin C, Mesmacque G, Zakrzewski D (2003) Application de critères de fatigue multiaxiale aux structures en alliage d’aluminium. Conference of G2RT, TILT conference; December 2003 Wu B, Ferraton L, Robin C, Mesmacque G, Zakrzewski D (2003) Application de critères de fatigue multiaxiale aux structures en alliage d’aluminium. Conference of G2RT, TILT conference; December 2003
go back to reference Yu L (2010) Fatigue reliability of ship structures. PhD thesis, University of Glasgow Yu L (2010) Fatigue reliability of ship structures. PhD thesis, University of Glasgow
go back to reference Yu X, Choi KK, Chang KH (1997) A mixed design approach for probabilistic structural durability. Struct Optim 14(3–4):81–90CrossRef Yu X, Choi KK, Chang KH (1997) A mixed design approach for probabilistic structural durability. Struct Optim 14(3–4):81–90CrossRef
Metadata
Title
Reliability-based design optimization applied to structures submitted to random fatigue loads
Authors
Younès Aoues
Emmanuel Pagnacco
Didier Lemosse
Leila Khalij
Publication date
17-10-2016
Publisher
Springer Berlin Heidelberg
Published in
Structural and Multidisciplinary Optimization / Issue 4/2017
Print ISSN: 1615-147X
Electronic ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-016-1604-1

Other articles of this Issue 4/2017

Structural and Multidisciplinary Optimization 4/2017 Go to the issue

Premium Partners