Skip to main content
Top

20-03-2024 | Original Paper

Reliable positioning-based human activity recognition based on indoor RSSI changes

Authors: Debajyoti Biswas, Suvankar Barai

Published in: Wireless Networks

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this article, a human activity recognition system based on Wi-Fi signal strength variation (SSV) has been proposed. This strategy is built by exploiting the known fact that radio signal significantly reacts when it interfaces with the human body by causing fading and shadowing effects. Different irregularities in the received signal strength indicator (RSSI) propagation patterns indicate individual human activities. In the proposed method, utilizing the received RSSIs from various access points (APs) of known locations to the smartphone carried by a human, first, the position of the human is localized with the distances utilizing half the number of APs’ based on the strong RSSI values. Then, using the strongest RSSIs of the nearest AP, the activity of the human is recognized using the changing signal strengths. To accurately measure the monotonic distances by the RSSI values, the regression analysis technique (RAT) is used in the path loss model (PLM) to mitigate error significantly. Besides, to classify human activities, we calculate the deviation between any human activity and no human. Moreover, we arrange all activities in a successive order. With this infrastructure, we can develop a system where both human localization and activity recognition can be done within a single setup, which not only detects the position of a person on the floor but also produces the health condition of each person staying on the floor. In the existing methods, wirable devices are used to detect human activities, which creates irritations when they have to carry some heavy electronic device attached to their body. Moreover, these devices are expensive. On the other hand, channel state-based solutions have some advantages over wirable systems, but this technology does not support in major smartphones. So, in this work, to overcome such challenges, we have focused on an RSSI-based framework that does not need to wear electronic devices on the body as well as supports every smartphone. So, with a simple setup, the system can be operated. Our system can successfully recognize at most five activities simultaneously for the presence of the same humans in the experimental indoor premises. Such an approach enhances the interactions in intelligent healthcare systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Islam, S. M. R., Kwak, D., Kabir, M. H., Hossain, M., & Kwak, K. (2015). The internet of things for health care: A comprehensive survey. IEEE Access, 3, 678–708.CrossRef Islam, S. M. R., Kwak, D., Kabir, M. H., Hossain, M., & Kwak, K. (2015). The internet of things for health care: A comprehensive survey. IEEE Access, 3, 678–708.CrossRef
2.
go back to reference Gao, H., Xu, K., Cao, M., Xiao, J., Xu, Q., & Yin, Y. (2022). The deep features and attention mechanism-based method to dish healthcare under social IoT systems: An empirical study with a hand-deep local-global net. IEEE Transactions on Computational Social Systems, 9(1), 336–347.CrossRef Gao, H., Xu, K., Cao, M., Xiao, J., Xu, Q., & Yin, Y. (2022). The deep features and attention mechanism-based method to dish healthcare under social IoT systems: An empirical study with a hand-deep local-global net. IEEE Transactions on Computational Social Systems, 9(1), 336–347.CrossRef
3.
go back to reference Wang, J., Zhang, Z., Li, B., Lee, S., & Sherratt, R. S. (2014). An enhanced fall detection system for elderly person monitoring using consumer home networks. IEEE Transactions on Consumer Electronics, 60(1), 23–29.CrossRef Wang, J., Zhang, Z., Li, B., Lee, S., & Sherratt, R. S. (2014). An enhanced fall detection system for elderly person monitoring using consumer home networks. IEEE Transactions on Consumer Electronics, 60(1), 23–29.CrossRef
4.
go back to reference Gu, Y., Ren, F., & Li, J. (2016). PAWS: Passive human activity recognition based on WiFi ambient signals. IEEE Internet of Things Journal, 3(5), 796–805.CrossRef Gu, Y., Ren, F., & Li, J. (2016). PAWS: Passive human activity recognition based on WiFi ambient signals. IEEE Internet of Things Journal, 3(5), 796–805.CrossRef
5.
go back to reference Limprasert, W., Wallace, A., & Michaelson, G. (2013). Real-time people tracking in a camera network. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(2), 263–271.ADSCrossRef Limprasert, W., Wallace, A., & Michaelson, G. (2013). Real-time people tracking in a camera network. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(2), 263–271.ADSCrossRef
6.
go back to reference Mascret, Q., Gagnon-Turcotte, G., Bielmann, M., Fall, C. L., Bouyer, L. J., & Gosselin, B. (2022). A wearable sensor network with embedded machine learning for real-time motion analysis and complex posture detection. IEEE Sensors Journal, 22(8), 7868–7876.ADSCrossRef Mascret, Q., Gagnon-Turcotte, G., Bielmann, M., Fall, C. L., Bouyer, L. J., & Gosselin, B. (2022). A wearable sensor network with embedded machine learning for real-time motion analysis and complex posture detection. IEEE Sensors Journal, 22(8), 7868–7876.ADSCrossRef
7.
go back to reference Guo, L., et al. (2019). Wiar: A public dataset for Wifi-based activity recognition. IEEE Access, 7, 154935–154945.CrossRef Guo, L., et al. (2019). Wiar: A public dataset for Wifi-based activity recognition. IEEE Access, 7, 154935–154945.CrossRef
8.
go back to reference Biswas, D., Barai, S., & Sau, B. (2020). Reliable RSSI Trend based Localization for three Different Environments. In 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), pp. 381–386. Biswas, D., Barai, S., & Sau, B. (2020). Reliable RSSI Trend based Localization for three Different Environments. In 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), pp. 381–386.
9.
go back to reference Bianchi, V., Ciampolini, P., & De Munari, I. (2019). RSSI-based indoor localization and identification for ZigBee wireless sensor networks in smart homes. IEEE Transactions on Instrumentation and Measurement, 68(2), 566–575.ADSCrossRef Bianchi, V., Ciampolini, P., & De Munari, I. (2019). RSSI-based indoor localization and identification for ZigBee wireless sensor networks in smart homes. IEEE Transactions on Instrumentation and Measurement, 68(2), 566–575.ADSCrossRef
10.
go back to reference Biswas, D., Barai, S., & Sau, B. (2021). A WiFi-based self-organizing multi-hop sensor network for internet of things. In International Conference on Innovative Trends in Information Technology (ICITIIT), pp. 1–6. Biswas, D., Barai, S., & Sau, B. (2021). A WiFi-based self-organizing multi-hop sensor network for internet of things. In International Conference on Innovative Trends in Information Technology (ICITIIT), pp. 1–6.
11.
go back to reference Biswas, D., Barai, S., & Sau, B. (2022). Enhanced RSSI-based real-time position-tracking system in vehicular networks. IEEE Sensors Letters, 6(6), 1–4.CrossRef Biswas, D., Barai, S., & Sau, B. (2022). Enhanced RSSI-based real-time position-tracking system in vehicular networks. IEEE Sensors Letters, 6(6), 1–4.CrossRef
12.
go back to reference Barai, S., Biswas, D., & Sau, B. (2017). Estimate distance measurement using NodeMCU ESP8266 based on RSSI technique. In IEEE Conference on Antenna Measurements & Applications (CAMA), pp. 170–173. Barai, S., Biswas, D., & Sau, B. (2017). Estimate distance measurement using NodeMCU ESP8266 based on RSSI technique. In IEEE Conference on Antenna Measurements & Applications (CAMA), pp. 170–173.
13.
go back to reference Hoang, M. T., et al. (2018). A soft range limited K-nearest neighbors algorithm for indoor localization enhancement. IEEE Sensors Journal, 18(24), 10208–10216.ADSCrossRef Hoang, M. T., et al. (2018). A soft range limited K-nearest neighbors algorithm for indoor localization enhancement. IEEE Sensors Journal, 18(24), 10208–10216.ADSCrossRef
14.
go back to reference Gacto, M. J., Soto-Hidalgo, J. M., Alcalá-Fdez, J., & Alcalá, R. (2019). Experimental study on 164 algorithms available in software tools for solving standard non-linear regression problems. IEEE Access, 7, 108916–108939.CrossRef Gacto, M. J., Soto-Hidalgo, J. M., Alcalá-Fdez, J., & Alcalá, R. (2019). Experimental study on 164 algorithms available in software tools for solving standard non-linear regression problems. IEEE Access, 7, 108916–108939.CrossRef
15.
go back to reference He, X., Wang, T., Liu, W., & Luo, T. (2019). Measurement data fusion based on optimized weighted least-squares algorithm for multi-target tracking. IEEE Access, 7, 13901–13916.CrossRef He, X., Wang, T., Liu, W., & Luo, T. (2019). Measurement data fusion based on optimized weighted least-squares algorithm for multi-target tracking. IEEE Access, 7, 13901–13916.CrossRef
16.
go back to reference Mrazovac, B., Bjelica, M. Z., Kukolj, D., Todorovic, B. M., & Samardzija, D. (2012). A human detection method for residential smart energy systems based on Zigbee RSSI changes. IEEE Transactions on Consumer Electronics, 58(3), 819–824.CrossRef Mrazovac, B., Bjelica, M. Z., Kukolj, D., Todorovic, B. M., & Samardzija, D. (2012). A human detection method for residential smart energy systems based on Zigbee RSSI changes. IEEE Transactions on Consumer Electronics, 58(3), 819–824.CrossRef
17.
go back to reference Faulkner, N., Parr, B., Alam, F., Legg, M., & Demidenko, S. (2020). CapLoc: Capacitive sensing floor for device-free localization and fall detection. IEEE Access, 8, 187353–187364.CrossRef Faulkner, N., Parr, B., Alam, F., Legg, M., & Demidenko, S. (2020). CapLoc: Capacitive sensing floor for device-free localization and fall detection. IEEE Access, 8, 187353–187364.CrossRef
18.
go back to reference Wang, Y., Wu, K., & Ni, L. M. (2017). WiFall: Device-free fall detection by wireless networks. IEEE Transactions on Mobile Computing, 16(2), 581–594.ADSCrossRef Wang, Y., Wu, K., & Ni, L. M. (2017). WiFall: Device-free fall detection by wireless networks. IEEE Transactions on Mobile Computing, 16(2), 581–594.ADSCrossRef
19.
go back to reference Messous, S., Liouane, H., Cheikhrouhou, O., & Hamam, H. (2021). Improved recursive DV-hop localization algorithm with RSSI measurement for wireless sensor networks. Sensors, 21, 4152.ADSCrossRefPubMedPubMedCentral Messous, S., Liouane, H., Cheikhrouhou, O., & Hamam, H. (2021). Improved recursive DV-hop localization algorithm with RSSI measurement for wireless sensor networks. Sensors, 21, 4152.ADSCrossRefPubMedPubMedCentral
20.
go back to reference Ding, X., & Dong, S. (2020). Improving positioning algorithm based on RSSI. Wireless Personal Communication, 110, 1947–1961.CrossRef Ding, X., & Dong, S. (2020). Improving positioning algorithm based on RSSI. Wireless Personal Communication, 110, 1947–1961.CrossRef
21.
go back to reference Thammachote, P., Intongkum, C., Sengchuai, K., et al. (2023). Contactless monitoring of human behaviors in bed using RSSI signals. Medical & Biological Engineering & Computing, 61, 2561–2579.CrossRef Thammachote, P., Intongkum, C., Sengchuai, K., et al. (2023). Contactless monitoring of human behaviors in bed using RSSI signals. Medical & Biological Engineering & Computing, 61, 2561–2579.CrossRef
22.
go back to reference Konings, D., Alam, F., Noble, F., & Lai, E.M.-K. (2019). SpringLoc: A device-free localization technique for indoor positioning and tracking using adaptive RSSI spring relaxation. IEEE Access, 7, 56960–56973.CrossRef Konings, D., Alam, F., Noble, F., & Lai, E.M.-K. (2019). SpringLoc: A device-free localization technique for indoor positioning and tracking using adaptive RSSI spring relaxation. IEEE Access, 7, 56960–56973.CrossRef
23.
go back to reference Yang, X., Cheng, J., Tang, X., et al. (2023). CSI-based human behavior segmentation and recognition using commodity Wi-Fi. Jounal of Wireless Communication and Networking, 2023, 46.CrossRef Yang, X., Cheng, J., Tang, X., et al. (2023). CSI-based human behavior segmentation and recognition using commodity Wi-Fi. Jounal of Wireless Communication and Networking, 2023, 46.CrossRef
24.
go back to reference Wang, X., Gao, L., Mao, S., & Pandey, S. (2017). CSI-based fingerprinting for indoor localization: A deep learning approach. IEEE Transactions on Vehicular Technology, 66(1), 763–776. Wang, X., Gao, L., Mao, S., & Pandey, S. (2017). CSI-based fingerprinting for indoor localization: A deep learning approach. IEEE Transactions on Vehicular Technology, 66(1), 763–776.
25.
go back to reference Ding, J., & Wang, Y. (2020). A WiFi-based smart home fall detection system using recurrent neural network. IEEE Transactions on Consumer Electronics, 66(4), 308–317.CrossRef Ding, J., & Wang, Y. (2020). A WiFi-based smart home fall detection system using recurrent neural network. IEEE Transactions on Consumer Electronics, 66(4), 308–317.CrossRef
26.
go back to reference Barai, S., Biswas, D., & Sau, B. (2020). Improved RSSI based angle localization using rotational object. International Conference on Power Electronics and Renewable Energy Applications (PEREA), pp. 1–5. Barai, S., Biswas, D., & Sau, B. (2020). Improved RSSI based angle localization using rotational object. International Conference on Power Electronics and Renewable Energy Applications (PEREA), pp. 1–5.
27.
go back to reference Barai, S., Biswas, D., & Sau, B. (2020). Sensors positioning for reliable RSSI-based outdoor localization using CFT. In IEEE International Symposium on Sustainable Energy: Signal Processing and Cyber Security (iSSSC), (pp. 1–5) Barai, S., Biswas, D., & Sau, B. (2020). Sensors positioning for reliable RSSI-based outdoor localization using CFT. In IEEE International Symposium on Sustainable Energy: Signal Processing and Cyber Security (iSSSC), (pp. 1–5)
28.
go back to reference Biswas, D., Barai, S., & Sau, B. (2021). Advanced RSSI-based Wi-Fi access point localization using smartphone. International Conference on Electrical and Electronics Engineering (ICEEE), 756, 543–553. Biswas, D., Barai, S., & Sau, B. (2021). Advanced RSSI-based Wi-Fi access point localization using smartphone. International Conference on Electrical and Electronics Engineering (ICEEE), 756, 543–553.
29.
go back to reference Xue, W., Qiu, W., Hua, X., & Yu, K. (2017). Improved Wi-Fi RSSI measurement for indoor localization. IEEE Sensors Journal, 17(7), 2224–2230.ADSCrossRef Xue, W., Qiu, W., Hua, X., & Yu, K. (2017). Improved Wi-Fi RSSI measurement for indoor localization. IEEE Sensors Journal, 17(7), 2224–2230.ADSCrossRef
30.
go back to reference Zhang, Z., Hu, N., Guo, Y., & Yang, X. (2019). The NLOS localization algorithm based on the linear regression model of hybrid filter. Chinese Control And Decision Conference (CCDC), 2019, 2442–2445.CrossRef Zhang, Z., Hu, N., Guo, Y., & Yang, X. (2019). The NLOS localization algorithm based on the linear regression model of hybrid filter. Chinese Control And Decision Conference (CCDC), 2019, 2442–2445.CrossRef
31.
go back to reference Jondhale, S. R., & Deshpande, R. S. (2019). Kalman filtering framework-based real time target tracking in wireless sensor networks using generalized regression neural networks. IEEE Sensors Journal, 19(1), 224–233.ADSCrossRef Jondhale, S. R., & Deshpande, R. S. (2019). Kalman filtering framework-based real time target tracking in wireless sensor networks using generalized regression neural networks. IEEE Sensors Journal, 19(1), 224–233.ADSCrossRef
32.
go back to reference Wang, F., Gong, W., & Liu, J. (2019). On spatial diversity in WiFi-based human activity recognition: A deep learning-based approach. IEEE Internet of Things Journal, 6(2), 2035–2047.CrossRef Wang, F., Gong, W., & Liu, J. (2019). On spatial diversity in WiFi-based human activity recognition: A deep learning-based approach. IEEE Internet of Things Journal, 6(2), 2035–2047.CrossRef
33.
go back to reference Zalabsky, T., Hnilicka, T., & Falta, M. (2020). Omnidirectional antenna for smart railway crossings. New Trends in Signal Processing (NTSP), 2020, 1–4. Zalabsky, T., Hnilicka, T., & Falta, M. (2020). Omnidirectional antenna for smart railway crossings. New Trends in Signal Processing (NTSP), 2020, 1–4.
34.
go back to reference Booranawong, A., Jindapetch, N., & Saito, H. (2018). A system for detection and tracking of human movements using RSSI signals. IEEE Sensors Journal, 18(6), 2531–2544.ADSCrossRef Booranawong, A., Jindapetch, N., & Saito, H. (2018). A system for detection and tracking of human movements using RSSI signals. IEEE Sensors Journal, 18(6), 2531–2544.ADSCrossRef
35.
go back to reference Yang, W., Wang, C., & Chen, C. (2019). Motion-pattern recognition system using a wavelet-neural network. IEEE Transactions on Consumer Electronics, 65(2), 170–178.CrossRef Yang, W., Wang, C., & Chen, C. (2019). Motion-pattern recognition system using a wavelet-neural network. IEEE Transactions on Consumer Electronics, 65(2), 170–178.CrossRef
36.
go back to reference Ai, H., Sun, X., Tao, J., Liu, M., & Li, S. (2022). DRVAT: Exploring RSSI series representation and attention model for indoor positioning. International Journal of Intelligent Systems, 37(7), 4065–4091.CrossRef Ai, H., Sun, X., Tao, J., Liu, M., & Li, S. (2022). DRVAT: Exploring RSSI series representation and attention model for indoor positioning. International Journal of Intelligent Systems, 37(7), 4065–4091.CrossRef
37.
go back to reference Lorenzi, P., Rao, R., Romano, G., Kita, A., & Irrera, F. (2016). Mobile devices for the real-time detection of specific human motion disorders. IEEE Sensors Journal, 16(23), 8220–8227. Lorenzi, P., Rao, R., Romano, G., Kita, A., & Irrera, F. (2016). Mobile devices for the real-time detection of specific human motion disorders. IEEE Sensors Journal, 16(23), 8220–8227.
38.
go back to reference Biswas, D., Barai, S., & Sau, B. (2021). Improved RSSI based Vehicle Localization using base station. In International Conference on Innovative Trends in Information Technology (ICITIIT), pp. 1–6. Biswas, D., Barai, S., & Sau, B. (2021). Improved RSSI based Vehicle Localization using base station. In International Conference on Innovative Trends in Information Technology (ICITIIT), pp. 1–6.
39.
go back to reference Ashraf, I., Hur, S., Shafiq, M., Kumari, S., & Park, Y. (2019). GUIDE: Smartphone sensors-based pedestrian indoor localization with heterogeneous devices. International Journal of Communication Systems, 32(15), e4062.CrossRef Ashraf, I., Hur, S., Shafiq, M., Kumari, S., & Park, Y. (2019). GUIDE: Smartphone sensors-based pedestrian indoor localization with heterogeneous devices. International Journal of Communication Systems, 32(15), e4062.CrossRef
40.
go back to reference Xie, Y., Wang, Y., Nallanathan, A., & Wang, L. (2016). An improved K-nearest-neighbor indoor localization method based on spearman distance. IEEE Signal Processing Letters, 23(3), 351–355.ADSCrossRef Xie, Y., Wang, Y., Nallanathan, A., & Wang, L. (2016). An improved K-nearest-neighbor indoor localization method based on spearman distance. IEEE Signal Processing Letters, 23(3), 351–355.ADSCrossRef
41.
go back to reference Shen, Y., Hwang, B., & Jeong, J. P. (2020). Particle filtering-based indoor positioning system for beacon tag tracking. IEEE Access, 8, 226445–226460.CrossRef Shen, Y., Hwang, B., & Jeong, J. P. (2020). Particle filtering-based indoor positioning system for beacon tag tracking. IEEE Access, 8, 226445–226460.CrossRef
42.
go back to reference Yang, K., Liang, Z., Liu, R., & Li, W. (2021). RSS-based indoor localization using min–max algorithm with area partition strategy. IEEE Access, 9, 125561–125568.CrossRef Yang, K., Liang, Z., Liu, R., & Li, W. (2021). RSS-based indoor localization using min–max algorithm with area partition strategy. IEEE Access, 9, 125561–125568.CrossRef
43.
go back to reference Yang, B., Guo, L., Guo, R., Zhao, M., & Zhao, T. (2020). A novel trilateration algorithm for RSSI-based indoor localization. IEEE Sensors Journal, 20(14), 8164–8172.ADSCrossRef Yang, B., Guo, L., Guo, R., Zhao, M., & Zhao, T. (2020). A novel trilateration algorithm for RSSI-based indoor localization. IEEE Sensors Journal, 20(14), 8164–8172.ADSCrossRef
44.
go back to reference Zhang, L., Hua, Y., Cotton, S. L., Yoo, S. K., Da Silva, C. R. C. M., & Scanlon, W. G. (2020). An RSS-based classification of user equipment usage in indoor millimeter wave wireless networks using machine learning. IEEE Access, 8, 14928–14943.CrossRef Zhang, L., Hua, Y., Cotton, S. L., Yoo, S. K., Da Silva, C. R. C. M., & Scanlon, W. G. (2020). An RSS-based classification of user equipment usage in indoor millimeter wave wireless networks using machine learning. IEEE Access, 8, 14928–14943.CrossRef
Metadata
Title
Reliable positioning-based human activity recognition based on indoor RSSI changes
Authors
Debajyoti Biswas
Suvankar Barai
Publication date
20-03-2024
Publisher
Springer US
Published in
Wireless Networks
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-024-03712-6