Skip to main content
Top

2021 | OriginalPaper | Chapter

Removal of Arsenic V+ contaminant by Fixed Bed Column Study by Graphene Oxide Manganese Iron (GO-Mn-Fe) Nano Composite-Coated Sand

Authors : Spandan Ghosh, Soumya Kanta Ray, Chanchal Majumder

Published in: Sustainability in Environmental Engineering and Science

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nowadays, nanoparticles are widely used to remove heavy metals specially arsenic. The removal of arsenic (V) has been significantly impacted by this nano material, which is a composite of manganese di iron oxide (Fe2MnO4) and monolayer sp2 hybridized graphene oxide. Iron and manganese ligand are functionalized in Graphene oxide by a robust process of one pot synthesis method. This GO-Mn-Fe nano composite has been characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and Brunauer–Emmett–Teller (BET). Smaller size, high surface area makes this nanoparticle is more attractive for arsenic-contaminated water treatment. A fixed bed column breakthrough study was done to determine the adsorption capacity of Graphene oxide manganese iron (GO-Mn-Fe) nano composite. The arsenic (V) metalloid adsorption was examined by different breakthrough curve Adams–Bohart, Thomas and Yoon–Nelson model. The Thomas model showed the superior coefficient of determination (R2) than another model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhang K, Dwivedi V, Chi C, Wu J (2010) Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water. J Hazard Mater 182(1–3):162–168CrossRef Zhang K, Dwivedi V, Chi C, Wu J (2010) Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water. J Hazard Mater 182(1–3):162–168CrossRef
2.
go back to reference Chandra V, Park J, Chun Y, Lee JW, Hwang IC, Kim KS (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4(7):3979–3986CrossRef Chandra V, Park J, Chun Y, Lee JW, Hwang IC, Kim KS (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4(7):3979–3986CrossRef
3.
go back to reference Majumder C (2017) Arsenic (V) removal using activated alumina: kinetics and modeling by response surface. J Environ Eng 144(3):04017115CrossRef Majumder C (2017) Arsenic (V) removal using activated alumina: kinetics and modeling by response surface. J Environ Eng 144(3):04017115CrossRef
4.
go back to reference Mazumder DG (2008) Chronic arsenic toxicity and human health. Indian J Med Res 128(4):436–447 Mazumder DG (2008) Chronic arsenic toxicity and human health. Indian J Med Res 128(4):436–447
5.
go back to reference Mazumder DNG, Haque R, Ghosh N, De BK, Santra A, Chakraborty D, Smith AH (1998) Arsenic levels in drinking water and the prevalence of skin lesions in West Bengal India. Int J Epidemiol 27(5):871–877CrossRef Mazumder DNG, Haque R, Ghosh N, De BK, Santra A, Chakraborty D, Smith AH (1998) Arsenic levels in drinking water and the prevalence of skin lesions in West Bengal India. Int J Epidemiol 27(5):871–877CrossRef
6.
go back to reference USEPA (U.S. Environmental Protection Agency) (2000) Regulations on the disposal of arsenic residuals from drinking water treatment plants. EPA/600/R-00/025, Cincinnati USEPA (U.S. Environmental Protection Agency) (2000) Regulations on the disposal of arsenic residuals from drinking water treatment plants. EPA/600/R-00/025, Cincinnati
7.
go back to reference Hristovski K, Baumgardner A, Westerhoff P (2007) Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: from nanopowders to aggregated nanoparticle media. J Hazard Mater 147(1–2):265–274CrossRef Hristovski K, Baumgardner A, Westerhoff P (2007) Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: from nanopowders to aggregated nanoparticle media. J Hazard Mater 147(1–2):265–274CrossRef
8.
go back to reference Wang C, Luo H, Zhang Z, Wu Y, Zhang J, Chen S (2014) Removal of As (III) and As (V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites. J Hazard Mater 268:124–131CrossRef Wang C, Luo H, Zhang Z, Wu Y, Zhang J, Chen S (2014) Removal of As (III) and As (V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites. J Hazard Mater 268:124–131CrossRef
9.
go back to reference Balasubramanian N, Madhavan K (2001) Arsenic removal from industrial effluent through electrocoagulation. Chem Eng Technol Indl Chem Plant Equipent Process Eng Biotechnol 24(5):519–521 Balasubramanian N, Madhavan K (2001) Arsenic removal from industrial effluent through electrocoagulation. Chem Eng Technol Indl Chem Plant Equipent Process Eng Biotechnol 24(5):519–521
10.
go back to reference Çiftçi TD, Henden E (2015) Nickel/nickel boride nanoparticles coated resin: a novel adsorbent for arsenic (III) and arsenic (V) removal. Powder Technol 269:470–480CrossRef Çiftçi TD, Henden E (2015) Nickel/nickel boride nanoparticles coated resin: a novel adsorbent for arsenic (III) and arsenic (V) removal. Powder Technol 269:470–480CrossRef
11.
go back to reference Mishra AK, Ramaprabhu S (2011) Functionalized graphene sheets for arsenic removal and desalination of sea water. Desalination 282:39–45CrossRef Mishra AK, Ramaprabhu S (2011) Functionalized graphene sheets for arsenic removal and desalination of sea water. Desalination 282:39–45CrossRef
12.
go back to reference Grassi M, Kaykioglu G, Belgiorno V, Lofrano G (2012) Removal of emerging contaminants from water and wastewater by adsorption process. In: Emerging compounds removal from wastewater, Springer, Dordrecht, pp 15–37 Grassi M, Kaykioglu G, Belgiorno V, Lofrano G (2012) Removal of emerging contaminants from water and wastewater by adsorption process. In: Emerging compounds removal from wastewater, Springer, Dordrecht, pp 15–37
13.
go back to reference Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B (2011) Remediation technologies for heavy metal contaminated groundwater. J Environ Manage 92(10):2355–2388CrossRef Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B (2011) Remediation technologies for heavy metal contaminated groundwater. J Environ Manage 92(10):2355–2388CrossRef
14.
go back to reference Attia TMS, Hu XL (2013) Synthesized magnetic nanoparticles coated zeolite for the adsorption of pharmaceutical compounds from aqueous solution using batch and column studies. Chemosphere 93(9):2076–2085 Attia TMS, Hu XL (2013) Synthesized magnetic nanoparticles coated zeolite for the adsorption of pharmaceutical compounds from aqueous solution using batch and column studies. Chemosphere 93(9):2076–2085
15.
go back to reference Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339CrossRef Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339CrossRef
16.
go back to reference Ray SK, Majumder C, Saha P (2017) Functionalized reduced graphene oxide (fRGO) for removal of fulvic acid contaminant. RSC Adv 7(35):21768–21779CrossRef Ray SK, Majumder C, Saha P (2017) Functionalized reduced graphene oxide (fRGO) for removal of fulvic acid contaminant. RSC Adv 7(35):21768–21779CrossRef
17.
go back to reference Wang SG, Sun XF, Liu XW, Gong WX, Gao BY, Bao N (2008) Chitosan hydrogel beads for fulvic acid adsorption: behaviors and mechanisms. Chem Eng J 142(3):239–247 Wang SG, Sun XF, Liu XW, Gong WX, Gao BY, Bao N (2008) Chitosan hydrogel beads for fulvic acid adsorption: behaviors and mechanisms. Chem Eng J 142(3):239–247
18.
go back to reference Kumar S, Nair RR, Pillai PB, Gupta SN, Iyengar MAR, Sood AK (2014) Graphene oxide–MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS Appl Mater Interfaces 6(20):17426–17436CrossRef Kumar S, Nair RR, Pillai PB, Gupta SN, Iyengar MAR, Sood AK (2014) Graphene oxide–MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS Appl Mater Interfaces 6(20):17426–17436CrossRef
19.
go back to reference Paredes JI, Villar-Rodil S, Martínez-Alonso A, Tascon JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24(19):10560–10564CrossRef Paredes JI, Villar-Rodil S, Martínez-Alonso A, Tascon JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24(19):10560–10564CrossRef
20.
go back to reference Zhang J, Azam MS, Shi C, Huang J, Yan B, Liu Q, Zeng H (2015) Poly (acrylic acid) functionalized magnetic graphene oxide nanocomposite for removal of methylene blue. RSC Adv 5(41):32272–32282CrossRef Zhang J, Azam MS, Shi C, Huang J, Yan B, Liu Q, Zeng H (2015) Poly (acrylic acid) functionalized magnetic graphene oxide nanocomposite for removal of methylene blue. RSC Adv 5(41):32272–32282CrossRef
21.
go back to reference Zhao D, Gao X, Wu C, Xie R, Feng S, Chen C (2016) Facile preparation of amino functionalized graphene oxide decorated with Fe3O4 nanoparticles for the adsorption of Cr (VI). Appl Surf Sci 384:1–9CrossRef Zhao D, Gao X, Wu C, Xie R, Feng S, Chen C (2016) Facile preparation of amino functionalized graphene oxide decorated with Fe3O4 nanoparticles for the adsorption of Cr (VI). Appl Surf Sci 384:1–9CrossRef
22.
go back to reference Qiu J, Liu F, Cheng S, Zong L, Zhu C, Ling C, Li A (2017) Recyclable nanocomposite of flowerlike MoS2@ hybrid acid-doped PANI immobilized on porous PAN nanofibers for the efficient removal of Cr (VI). ACS Sustain Chem Eng 6(1):447–456CrossRef Qiu J, Liu F, Cheng S, Zong L, Zhu C, Ling C, Li A (2017) Recyclable nanocomposite of flowerlike MoS2@ hybrid acid-doped PANI immobilized on porous PAN nanofibers for the efficient removal of Cr (VI). ACS Sustain Chem Eng 6(1):447–456CrossRef
23.
go back to reference Wei Z, Xing R, Zhang X, Liu S, Yu H, Li P (2012) Facile template-free fabrication of hollow nestlike α-Fe2O3 nanostructures for water treatment. ACS Appl Mater Interfaces 5:598–604CrossRef Wei Z, Xing R, Zhang X, Liu S, Yu H, Li P (2012) Facile template-free fabrication of hollow nestlike α-Fe2O3 nanostructures for water treatment. ACS Appl Mater Interfaces 5:598–604CrossRef
24.
go back to reference Mishra V, Balomajumder C, Agarwal VK (2013) Adsorption of Cu (II) on the surface of nonconventional biomass: a study on forced convective mass transfer in packed bed column. J Waste Manage Mishra V, Balomajumder C, Agarwal VK (2013) Adsorption of Cu (II) on the surface of nonconventional biomass: a study on forced convective mass transfer in packed bed column. J Waste Manage
25.
go back to reference Chowdhury ZZ, Abd Hamid SB, Zain SM (2015) Evaluating design parameters for breakthrough curve analysis and kinetics of fixed bed columns for Cu (II) cations using lignocellulosic wastes. Bioresources 10(1):732–749 Chowdhury ZZ, Abd Hamid SB, Zain SM (2015) Evaluating design parameters for breakthrough curve analysis and kinetics of fixed bed columns for Cu (II) cations using lignocellulosic wastes. Bioresources 10(1):732–749
26.
go back to reference Sana D, Jalila S (2017) A comparative study of adsorption and regeneration with different agricultural wastes as adsorbents for the removal of methylene blue from aqueous solution. Chin J Chem Eng 25(9):1282–1287 Sana D, Jalila S (2017) A comparative study of adsorption and regeneration with different agricultural wastes as adsorbents for the removal of methylene blue from aqueous solution. Chin J Chem Eng 25(9):1282–1287
27.
go back to reference Han R, Wang Y, Zhao X, Wang Y, Xie F, Cheng J, Tang M (2009) Adsorption of methylene blue by phoenix tree leaf powder in a fixed-bed column: experiments and prediction of breakthrough curves. Desalination 245(1–3):284–297CrossRef Han R, Wang Y, Zhao X, Wang Y, Xie F, Cheng J, Tang M (2009) Adsorption of methylene blue by phoenix tree leaf powder in a fixed-bed column: experiments and prediction of breakthrough curves. Desalination 245(1–3):284–297CrossRef
Metadata
Title
Removal of Arsenic V+ contaminant by Fixed Bed Column Study by Graphene Oxide Manganese Iron (GO-Mn-Fe) Nano Composite-Coated Sand
Authors
Spandan Ghosh
Soumya Kanta Ray
Chanchal Majumder
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-6887-9_25