Skip to main content
Top
Published in: Soft Computing 12/2020

02-04-2020 | Foundations

Representation of De Morgan and (Semi-)Kleene Lattices

Author: Umberto Rivieccio

Published in: Soft Computing | Issue 12/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Twist-structure representation theorems are established for De Morgan and Kleene lattices. While the former result relies essentially on the quasivariety of De Morgan lattices being finitely generated, the representation for Kleene lattices does not and can be extended to more general algebras. In particular, one can drop the double negation identity (involutivity). The resulting class of algebras, named semi-Kleene lattices by analogy with Sankappanavar’s semi-De Morgan lattices, is shown to be representable through a twist-structure construction inspired by the Cornish–Fowler duality for Kleene lattices. Quasi-Kleene lattices, a subvariety of semi-Kleene, are also defined and investigated, showing that they are precisely the implication-free subreducts of the recently introduced class of quasi-Nelson lattices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1

For the related class of Sugihara monoids, a twist-structure representation has been given in Galatos and Raftery (2015). An interesting question for further research is how the twist construction of Galatos and Raftery (2015) is related to (in particular, whether it can be viewed as a special case of) the ones introduced in Sects. 4 and 5.

 
2

As observed in Rivieccio and Spinks (2019), these conditions imply \(n(a_+) \wedge _- a_- = 0_-\) for all \(\langle a_+, a_- \rangle \in A\) and \(\pi _2[A] = L_-\). (I shall use these facts, sometimes without warning, in proofs.) The first holds because, since \(a_+ \wedge _+ p(a_-) = 0_+\), we can apply n to both sides of the equation and, using its properties, we obtain \(n(a_+ \wedge _+ p(a_-)) = n(a_+) \wedge _- n(p(a_-)) = n(a_+) \wedge _- a_- = 0_-= n(0_+) \) as required. Likewise, \(\pi _2[A] = L_-\) follows from \(\pi _1[A] = L_+\). In fact, for all \(a_- \in L_-\), we know that \(a_- = n(p(a_-))\), where \(p(a_-) \in L_+\). Then, \(\pi _1[A] = L_+\) guarantees that there is \(b_- \in L_- \) such that \(\langle p(a_-), b_- \rangle \in A\), which means that \(\lnot \langle p(a_-), b_- \rangle = \langle p(b_-), n(p(a_-) \rangle = \langle p(b_-), a_- \rangle \in A\). Thus, \(a_- \in \pi _2[A] \) as required.

 
3

I do not know how one could further relax Definition 5.1 so as to include \(\mathbf {A} _4\) as well. On the one hand, this would be desirable, because \(\mathbf {A} _4\)can indeed by represented by a twist-structure, as is easy to check. However, if we delete (SK 5) from Definition 5.1, then it is not clear how to make the twist-structure construction work in general. In this sense, \(\mathbf {A} _4\) is perhaps a fortunate case because, being a chain, it satisfies the “Ockham identity” \(\lnot (x \wedge y ) \approx \lnot x \vee \lnot y \) (see Proposition 5.3). This ensures that \(\mathbf {A} _4\) can be represented as a twist-structure, but of course replacing (SK 5) in Definition 5.1 with the Ockham identity would confine us to a quite specific subclass of semi-De Morgan lattices (i.e., Ockham lattices).

 
4

Implicative meet-semilattices are the \(\langle \wedge , \rightarrow \rangle \)-subreducts of Heyting algebras, corresponding to the conjunction–implication fragment of intuitionistic logic. Thus, in particular, the \(\langle \wedge , \rightarrow \rangle \)-reduct of every Heyting algebra is an implicative meet-semilattice.

 
5

This is probably the best occasion to point out an unfortunate terminological clash with the previous literature, of which M. Spinks and I were not aware while writing (Rivieccio and Spinks 2019). Cignoli (1986) and Odintsov (2010) in their wake, call a Kleene algebra that satisfies item (i) of Theorem 6.2 a quasi-Nelson algebra. I shall prove in Theorem 6.3 that every quasi-Nelson algebra in the sense of Rivieccio and Spinks (2019) indeed satisfies both items of Theorem 6.2; obviously, however, it need not be involutive. Thus, neither the quasi-Nelson algebras of Cignoli–Odintsov are a special case of ours, nor the other way around.

 
6

Indeed, the property of being \(({\mathbf {0}}, {\mathbf {1}})\)-congruence orderable does not seem unrelated to that of being representable by some kind of twist-structure construction, for both essentially rely on a filter separation property. This is quite clear at least in the context of residuated lattices, where filters are in one–one correspondence with congruences; see (Spinks et al. 2018, Section 7). In the quasi-Kleene context, one may observe, for instance, that the quasi-identity (iv) from Proposition 6.14 is essentially saying that two elements must be equal if they generate the same consistent filter and the same total filter...

 
Literature
  1. Albuquerque U (2015) Operators and strong versions of sentential logics in abstract algebraic logic. PhD dissertation, University of Barcelona
  2. Albuquerque H, Prenosil A, Rivieccio U (2017) An algebraic view of super-Belnap logics. Stud Logica 105(6):1051–1086MathSciNetMATHView Article
  3. Brignole D, Monteiro A (1967) Caracterisation des algèbres de Nelson par des egalités. I, II. Proc Jpn Acad 43:279–285 Reproduced in Notas de Lógica Matemática No. 20, Universidad Nacional del Sur, Bahía Blanca (1964)MATHView Article
  4. Cabrer LM, Craig AP, Priestley HA (2015) Product representation for default bilattices: an application of natural duality theory. J Pure Appl Algebra 219(7):2962–2988MathSciNetMATHView Article
  5. Celani SA (1999) Distributive lattices with a negation operator. Math Logic Q 45(2):207–218MathSciNetMATHView Article
  6. Celani SA (2007) Representations for some algebras with a negation operator. Contrib Discrete Math 2(2):205–213MathSciNetMATH
  7. Cignoli R (1986) The class of Kleene algebras satisfying an interpolation property and Nelson algebras. Algebra Univ 23(3):262–292MathSciNetMATHView Article
  8. Cornish WH, Fowler PR (1977) Coproducts of De Morgan algebras. Bull Austral Math Soc 16(1):1–13MathSciNetMATHView Article
  9. Cornish WH, Fowler PR (1979) Coproducts of Kleene algebras. J Austral Math Soc Ser A 27(2):209–220MathSciNetMATHView Article
  10. Davey BA, Priestley HA (1990) Introduction to lattices and order. Cambridge University Press, CambridgeMATH
  11. Dunn JM (1966) The algebra of intensional logics. Doctoral dissertation, University of Pittsburgh
  12. Fidel MM (1978) An algebraic study of a propositional system of Nelson. In: Arruda AI, Da Costa NCA, Chaqui R (eds) Mathematical logic, proceedings of the first Brazilian conference, vol 39. Lecture notes in pure and applied mathematics. Marcel Dekker, New York, pp 99–117
  13. Font JM (1997) Belnap’s four-valued logic and De Morgan lattices. Logic J IGPL 5(3):413–440MathSciNetMATHView Article
  14. Galatos N, Raftery JG (2015) Idempotent residuated structures: some category equivalences and their applications. Trans Am Math Soc 367(5):3189–3223MathSciNetMATHView Article
  15. Gehrke M, Harding J (2001) Bounded lattice expansions. J Algebra 238(1):345–371MathSciNetMATHView Article
  16. Greco F, Liang F, Moshier A, Palmigiano A (2017) Multi-type display calculus for semi-De Morgan logic. In: Kennedy J, de Queiroz R (eds) Proceedings of WoLLIC 2017, pp 199–215
  17. Hobby D (1996) Semi-De Morgan algebras. Stud Logica 56(1–2):151–183MathSciNetMATHView Article
  18. Idziak PM, Słomczyńska K, Wroński A (2009) Fregean varieties. Int J Algebra Comput 19:595–645MathSciNetMATHView Article
  19. Jansana R, Rivieccio U (2014) Dualities for modal N4-lattices. Logic J IGPL 22(4):608–637MathSciNetMATHView Article
  20. Jung A, Rivieccio U (2019) A duality for two-sorted lattices. (submitted)
  21. Kalman JA (1958) Lattices with involution. Trans Am Math Soc 87:485–491MathSciNetMATHView Article
  22. Maia P, Rivieccio U, Jung A (2018) Non-involutive twist-structures. Logic J IGPL (Special issue on recovery operators and logics of formal consistency & inconsistencies)
  23. Monteiro A (1960) Matrices de Morgan caractéristiques pour le calcul propositionnel classique. Anais da Academia Brasileira de Ciencias 33:1–7MATH
  24. Monteiro A (1963) Construction des algèbres de Nelson finies. Bull Acad Pol Sci 11:359–362MATH
  25. Nascimento T, Rivieccio U, Marcos J, Spinks M (2018) Algebraic semantics for Nelson’s logic \(S\). In: Moss L, de Queiroz R, Martinez M (eds) Logic, language, information, and computation. WoLLIC 2018, vol 10944. Lecture notes in computer science. Springer, Berlin, pp 271–288
  26. Nascimento T, Rivieccio U, Marcos J, Spinks M (2019) Nelson’s logic \(S\). Logic J IGPL
  27. Nelson D (1949) Constructible falsity. J Symb Log 14:16–26MathSciNetMATHView Article
  28. Odintsov SP (2004) On the representation of N4-lattices. Stud Logica 76:385–405MathSciNetMATHView Article
  29. Odintsov SP (2010) Priestley duality for paraconsistent Nelson’s logic. Stud Logica 96(1):65–93MathSciNetMATHView Article
  30. Palma C, Santos R (2003) On a subvariety of semi-De Morgan algebras. Acta Math Hung 98(4):323–328MathSciNetMATHView Article
  31. Pietz A, Rivieccio U (2013) Nothing but the truth. J Philos Logic 42(1):125–135MathSciNetMATHView Article
  32. Přenosil A (2015) The lattice of super-Belnap logics. (submitted)
  33. Pynko AP (1995a) Characterizing Belnap’s logic via De Morgan’s laws. Math Logic Q 41(4):442–454MathSciNetMATHView Article
  34. Pynko AP (1995b) On Priest’s logic of paradox. J Appl Non Class Logics 5(2):219–225MathSciNetMATHView Article
  35. Pynko AP (1999) Implicational classes of De Morgan lattices. Discrete Math 205(1–3):171–181MathSciNetMATHView Article
  36. Rivieccio U (2012) An infinity of super-Belnap logics. J Appl Non Class Logics 22(4):319–335MathSciNetMATHView Article
  37. Rivieccio U (2014) Implicative twist-structures. Algebra Univ 71(2):155–186MathSciNetMATHView Article
  38. Rivieccio U, Spinks M (to appear) Quasi-Nelson; or, non-involutive Nelson algebras. Trends Logic (special issue dedicated to the conference AsubL (Algebra and substructural logics—take 6), Cagliari
  39. Rivieccio U, Spinks M (2019) Quasi-Nelson algebras. Electron Notes Theor Comput Sci 344:169–188MathSciNetMATHView Article
  40. Rivieccio U, Flaminio T, Nascimento T (2020) On the representation of (weak) nilpotent minimum algebras. In: Proceedings of the 2020 IEEE international conference on fuzzy systems, Glasgow, UK, 19–24 July 2020
  41. Sankappanavar HP (1987) Semi-De Morgan algebras. J Symb Log 52(3):712–724MathSciNetMATHView Article
  42. Sendlewski A (1990) Nelson algebras through Heyting ones. I. Stud Logica 49:105–126MathSciNetMATHView Article
  43. Spinks M, Rivieccio U, Nascimento T (2018) Compatibly involutive residuated lattices and the Nelson identity. Soft Comput. https://​doi.​org/​10.​1007/​s00500-018-3588-9 MATHView Article
  44. Vakarelov D (1977) Notes on \(\cal{N}\)-lattices and constructive logic with strong negation. Stud Logica 36:109–125MathSciNetMATHView Article
Metadata
Title
Representation of De Morgan and (Semi-)Kleene Lattices
Author
Umberto Rivieccio
Publication date
02-04-2020
Publisher
Springer Berlin Heidelberg
Published in
Soft Computing / Issue 12/2020
Print ISSN: 1432-7643
Electronic ISSN: 1433-7479
DOI
https://doi.org/10.1007/s00500-020-04885-w

Other articles of this Issue 12/2020

Soft Computing 12/2020 Go to the issue

Premium Partner