Skip to main content
Top

2018 | OriginalPaper | Chapter

Research and Development of Metal-Air Fuel Cells

Authors : Erdong Wang, Zhao Yan, Qianfeng Liu, Jianxin Gao, Min Liu, Gongquan Sun

Published in: Anion Exchange Membrane Fuel Cells

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Metal-air fuel cells (MAFCs) are a kind of electrochemical devices that can directly convert the chemical energy stored in metals fuels (e.g., Mg, Al or Zn) or their alloys into electricity. Strictly, MAFCs and metal-air batteries are different, that is, the former one can continue to produce electricity by the metal fuels replacement, and the latter one is only one-time use.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J.-S. Lee, S. Tai Kim, R. Cao et al., Metal-air batteries with high energy density: Li-air versus Zn-Air. Adv. Energy Mater. 1(1), 34–50 (2011)CrossRef J.-S. Lee, S. Tai Kim, R. Cao et al., Metal-air batteries with high energy density: Li-air versus Zn-Air. Adv. Energy Mater. 1(1), 34–50 (2011)CrossRef
2.
go back to reference M.G. Medeiros, R.R. Bessette, C.M. Deschenes et al., Optimization of the magnesium-solution phase catholyte semi-fuel cell for long duration testing. J. Power Sources 96(1), 236–239 (2001)CrossRef M.G. Medeiros, R.R. Bessette, C.M. Deschenes et al., Optimization of the magnesium-solution phase catholyte semi-fuel cell for long duration testing. J. Power Sources 96(1), 236–239 (2001)CrossRef
3.
go back to reference T.B. Reddy, Linden’s Handbook of Batteries, 4th edn (McGraw-Hill Companies, New York, 2011) T.B. Reddy, Linden’s Handbook of Batteries, 4th edn (McGraw-Hill Companies, New York, 2011)
4.
go back to reference F.R. McLarnon, E.J. Cairns, The secondary alkaline zinc electrode. J. Electrochem. Soc. 138(2), 645–656 (1991)CrossRef F.R. McLarnon, E.J. Cairns, The secondary alkaline zinc electrode. J. Electrochem. Soc. 138(2), 645–656 (1991)CrossRef
5.
go back to reference V. Caramia, B. Bozzini, Materials science aspects of zinc–air batteries: a review. Mater. Renew. Sustain. Energy 3(2), 28 (2014)CrossRef V. Caramia, B. Bozzini, Materials science aspects of zinc–air batteries: a review. Mater. Renew. Sustain. Energy 3(2), 28 (2014)CrossRef
6.
go back to reference J. Fu, Z.P. Cano, M.G. Park et al., Electrically rechargeable Zinc-Air batteries: progress, challenges, and perspectives. Adv. Mater. 29(7), 1604685 (2017)CrossRef J. Fu, Z.P. Cano, M.G. Park et al., Electrically rechargeable Zinc-Air batteries: progress, challenges, and perspectives. Adv. Mater. 29(7), 1604685 (2017)CrossRef
7.
go back to reference S. Thomas, N. Birbilis, M.S. Venkatraman, et al., Self-repairing oxides to protect zinc: review, discussion and prospects. Corros. Sci. 69(Supplement C), 11–22 (2013) S. Thomas, N. Birbilis, M.S. Venkatraman, et al., Self-repairing oxides to protect zinc: review, discussion and prospects. Corros. Sci. 69(Supplement C), 11–22 (2013)
8.
go back to reference S. Szpak, C. Gabriel, The Zn-KOH system: the solution-precipitation path for anodic ZnO formation. J. Electrochem. Soc. 126(11), 1914–1923 (1979)CrossRef S. Szpak, C. Gabriel, The Zn-KOH system: the solution-precipitation path for anodic ZnO formation. J. Electrochem. Soc. 126(11), 1914–1923 (1979)CrossRef
9.
go back to reference M.B. Liu, G. Cook, N. Yao, Passivation of zinc anodes in KOH electrolytes. J. Electrochem. Soc. 128(8), 1663–1668 (1981)CrossRef M.B. Liu, G. Cook, N. Yao, Passivation of zinc anodes in KOH electrolytes. J. Electrochem. Soc. 128(8), 1663–1668 (1981)CrossRef
10.
go back to reference R.J. Wang, Z.H. Yang, B. Yang et al., Superior cycle stability and high rate capability of Zn-Al-In-hydrotalcite as negative electrode materials for Ni-Zn secondary batteries. J. Power Sources 251, 344–350 (2014)CrossRef R.J. Wang, Z.H. Yang, B. Yang et al., Superior cycle stability and high rate capability of Zn-Al-In-hydrotalcite as negative electrode materials for Ni-Zn secondary batteries. J. Power Sources 251, 344–350 (2014)CrossRef
11.
go back to reference Z. Zhang, Z. Yang, R. Wang et al., Electrochemical performance of ZnO/SnO2 composites as anode materials for Zn/Ni secondary batteries. Electrochim. Acta 134, 287–292 (2014)CrossRef Z. Zhang, Z. Yang, R. Wang et al., Electrochemical performance of ZnO/SnO2 composites as anode materials for Zn/Ni secondary batteries. Electrochim. Acta 134, 287–292 (2014)CrossRef
12.
go back to reference Y.F. Yuan, L.Q. Yu, H.M. Wu et al., Electrochemical performances of Bi based compound film-coated ZnO as anodic materials of Ni-Zn secondary batteries]. Electrochim. Acta 56(11), 4378–4383 (2011)CrossRef Y.F. Yuan, L.Q. Yu, H.M. Wu et al., Electrochemical performances of Bi based compound film-coated ZnO as anodic materials of Ni-Zn secondary batteries]. Electrochim. Acta 56(11), 4378–4383 (2011)CrossRef
13.
go back to reference T. Wang, Z. Yang, J. Huang et al., The electrochemical performances of La2O3-doped ZnO in Ni-Zn secondary batteries. Electrochim. Acta 112, 104–110 (2013)CrossRef T. Wang, Z. Yang, J. Huang et al., The electrochemical performances of La2O3-doped ZnO in Ni-Zn secondary batteries. Electrochim. Acta 112, 104–110 (2013)CrossRef
15.
go back to reference X.G. Zhang, Fibrous zinc anodes for high power batteries. J. Power Sources 163(1), 591–597 (2006)CrossRef X.G. Zhang, Fibrous zinc anodes for high power batteries. J. Power Sources 163(1), 591–597 (2006)CrossRef
16.
go back to reference M.N. Masri, A.A. Mohamad, Effect of adding carbon black to a porous zinc anode in a zinc-air battery. J. Electrochem. Soc. 160(4), A715–A721 (2013)CrossRef M.N. Masri, A.A. Mohamad, Effect of adding carbon black to a porous zinc anode in a zinc-air battery. J. Electrochem. Soc. 160(4), A715–A721 (2013)CrossRef
17.
go back to reference J. Fu, D.U. Lee, F.M. Hassan et al., Flexible high-energy polymer-electrolyte-based rechargeable zinc-air batteries. Adv. Mater. 27(37), 5617–5622 (2015)CrossRef J. Fu, D.U. Lee, F.M. Hassan et al., Flexible high-energy polymer-electrolyte-based rechargeable zinc-air batteries. Adv. Mater. 27(37), 5617–5622 (2015)CrossRef
18.
go back to reference Q. Tian, X. Guo, Manufacturing microporous foam zinc materials with high porosity by electrodeposition. J. Wuhan Univ. Technol. Mater. Sci. Ed. 26(5), 843–846 (2011) Q. Tian, X. Guo, Manufacturing microporous foam zinc materials with high porosity by electrodeposition. J. Wuhan Univ. Technol. Mater. Sci. Ed. 26(5), 843–846 (2011)
19.
go back to reference Z. Yan, E. Wang, L. Jiang et al., Superior cycling stability and high rate capability of three-dimensional Zn/Cu foam electrodes for zinc-based alkaline batteries. RSC Adv. 5(102), 83781–83787 (2015)CrossRef Z. Yan, E. Wang, L. Jiang et al., Superior cycling stability and high rate capability of three-dimensional Zn/Cu foam electrodes for zinc-based alkaline batteries. RSC Adv. 5(102), 83781–83787 (2015)CrossRef
20.
go back to reference Y. Cheng, Q. Lai, X. Li et al., Zinc-nickel single flow batteries with improved cycling stability by eliminating zinc accumulation on the negative electrode. Electrochim. Acta 145, 109–115 (2014)CrossRef Y. Cheng, Q. Lai, X. Li et al., Zinc-nickel single flow batteries with improved cycling stability by eliminating zinc accumulation on the negative electrode. Electrochim. Acta 145, 109–115 (2014)CrossRef
22.
go back to reference Q. Li, N.J. Bjerrum, Aluminum as anode for energy storage and conversion: a review. J. Power Sources 110(1), 1–10 (2002)CrossRef Q. Li, N.J. Bjerrum, Aluminum as anode for energy storage and conversion: a review. J. Power Sources 110(1), 1–10 (2002)CrossRef
23.
go back to reference D. Egan, C.P. De León, R. Wood et al., Developments in electrode materials and electrolytes for aluminium–air batteries. J. Power Sources 236, 293–310 (2013)CrossRef D. Egan, C.P. De León, R. Wood et al., Developments in electrode materials and electrolytes for aluminium–air batteries. J. Power Sources 236, 293–310 (2013)CrossRef
24.
go back to reference M. Doche, F. Novel-Cattin, R. Durand et al., Characterization of different grades of aluminum anodes for aluminum/air batteries. J. Power Sources 65(1–2), 197–205 (1997)CrossRef M. Doche, F. Novel-Cattin, R. Durand et al., Characterization of different grades of aluminum anodes for aluminum/air batteries. J. Power Sources 65(1–2), 197–205 (1997)CrossRef
25.
go back to reference Y.-J. Cho, I.-J. Park, H.-J. Lee et al., Aluminum anode for aluminum–air battery—Part I: Influence of aluminum purity. J. Power Sources 277, 370–378 (2015)CrossRef Y.-J. Cho, I.-J. Park, H.-J. Lee et al., Aluminum anode for aluminum–air battery—Part I: Influence of aluminum purity. J. Power Sources 277, 370–378 (2015)CrossRef
26.
go back to reference M. Nestoridi, D. Pletcher, R.J.K. Wood et al., The study of aluminium anodes for high power density Al/air batteries with brine electrolytes. J. Power Sources 178(1), 445–455 (2008)CrossRef M. Nestoridi, D. Pletcher, R.J.K. Wood et al., The study of aluminium anodes for high power density Al/air batteries with brine electrolytes. J. Power Sources 178(1), 445–455 (2008)CrossRef
27.
go back to reference C. Tuck, J. Hunter, G. Scamans, The electrochemical behavior of Al-Ga alloys in alkaline and neutral electrolytes. J. Electrochem. Soc. 134(12), 2970–2981 (1987)CrossRef C. Tuck, J. Hunter, G. Scamans, The electrochemical behavior of Al-Ga alloys in alkaline and neutral electrolytes. J. Electrochem. Soc. 134(12), 2970–2981 (1987)CrossRef
28.
go back to reference W. Wilhelmsen, T. Arnesen, Ø. Hasvold et al., The electrochemical behaviour of Al In alloys in alkaline electrolytes. Electrochim. Acta 36(1), 79–85 (1991)CrossRef W. Wilhelmsen, T. Arnesen, Ø. Hasvold et al., The electrochemical behaviour of Al In alloys in alkaline electrolytes. Electrochim. Acta 36(1), 79–85 (1991)CrossRef
29.
go back to reference E.J. Rudd, D.W. Gibbons, High energy density aluminum/oxygen cell. J. Power Sources 47(3), 329–340 (1994)CrossRef E.J. Rudd, D.W. Gibbons, High energy density aluminum/oxygen cell. J. Power Sources 47(3), 329–340 (1994)CrossRef
30.
go back to reference J.T.B. Gundersen, A. Aytaç, J.H. Nordlien et al., Effect of heat treatment on electrochemical behaviour of binary aluminium model alloys. Corros. Sci. 46(3), 697–714 (2004)CrossRef J.T.B. Gundersen, A. Aytaç, J.H. Nordlien et al., Effect of heat treatment on electrochemical behaviour of binary aluminium model alloys. Corros. Sci. 46(3), 697–714 (2004)CrossRef
31.
go back to reference I.-J. Park, S.-R. Choi, J.-G. Kim, Aluminum anode for aluminum-air battery–Part II: Influence of In addition on the electrochemical characteristics of Al-Zn alloy in alkaline solution. J. Power Sources 357, 47–55 (2017)CrossRef I.-J. Park, S.-R. Choi, J.-G. Kim, Aluminum anode for aluminum-air battery–Part II: Influence of In addition on the electrochemical characteristics of Al-Zn alloy in alkaline solution. J. Power Sources 357, 47–55 (2017)CrossRef
32.
go back to reference P.W. Jeffrey, W. Halliop, F.N. Smith, Aluminum Anode Alloy (1988) P.W. Jeffrey, W. Halliop, F.N. Smith, Aluminum Anode Alloy (1988)
33.
go back to reference J.A. Hunter, G.M. Scamans, W.B. O’callaghan, et al., Aluminium Batteries (1991) J.A. Hunter, G.M. Scamans, W.B. O’callaghan, et al., Aluminium Batteries (1991)
34.
go back to reference C. Shu, E. Wang, L. Jiang et al., Studies on palladium coated titanium foams cathode for Mg–H2O2 fuel cells. J. Power Sources 208, 159–164 (2012)CrossRef C. Shu, E. Wang, L. Jiang et al., Studies on palladium coated titanium foams cathode for Mg–H2O2 fuel cells. J. Power Sources 208, 159–164 (2012)CrossRef
35.
go back to reference C.Z. Shu, E.D. Wang, L.H. Jiang et al., High performance cathode based on carbon fiber felt for magnesium-air fuel cells. Int. J. Hydrogen Energy 38(14), 5885–5893 (2013)CrossRef C.Z. Shu, E.D. Wang, L.H. Jiang et al., High performance cathode based on carbon fiber felt for magnesium-air fuel cells. Int. J. Hydrogen Energy 38(14), 5885–5893 (2013)CrossRef
36.
go back to reference Q. Liu, Z. Yan, E. Wang et al., A high-specific-energy magnesium/water battery for full-depth ocean application. Int. J. Hydrogen Energy 42(36), 23045–23053 (2017)CrossRef Q. Liu, Z. Yan, E. Wang et al., A high-specific-energy magnesium/water battery for full-depth ocean application. Int. J. Hydrogen Energy 42(36), 23045–23053 (2017)CrossRef
37.
go back to reference K. Gusieva, C.H.J. Davies, J.R. Scully et al., Corrosion of magnesium alloys: the role of alloying. Int. Mater. Rev. 60(3), 169–194 (2015)CrossRef K. Gusieva, C.H.J. Davies, J.R. Scully et al., Corrosion of magnesium alloys: the role of alloying. Int. Mater. Rev. 60(3), 169–194 (2015)CrossRef
38.
go back to reference T.R. Zhang, Z.L. Tao, J. Chen, Magnesium-air batteries: from principle to application. Mater. Horiz. 1(2), 196–206 (2014)CrossRef T.R. Zhang, Z.L. Tao, J. Chen, Magnesium-air batteries: from principle to application. Mater. Horiz. 1(2), 196–206 (2014)CrossRef
39.
go back to reference H.Q. Xiong, H.L. Zhu, J. Luo et al., Effects of heat treatment on the discharge behavior of Mg-6wt.%Al-1wt.%Sn alloy as anode for magnesium-air batteries. J. Mater. Eng. Perform. 26(6), 2901–2911 (2017)CrossRef H.Q. Xiong, H.L. Zhu, J. Luo et al., Effects of heat treatment on the discharge behavior of Mg-6wt.%Al-1wt.%Sn alloy as anode for magnesium-air batteries. J. Mater. Eng. Perform. 26(6), 2901–2911 (2017)CrossRef
40.
go back to reference H.Q. Xiong, K. Yu, X.A. Yin et al., Effects of microstructure on the electrochemical discharge behavior of Mg-6 wt%Al-1 wt%Sn alloy as anode for Mg-air primary battery. J. Alloy. Compd. 708, 652–661 (2017)CrossRef H.Q. Xiong, K. Yu, X.A. Yin et al., Effects of microstructure on the electrochemical discharge behavior of Mg-6 wt%Al-1 wt%Sn alloy as anode for Mg-air primary battery. J. Alloy. Compd. 708, 652–661 (2017)CrossRef
41.
go back to reference R.-C. Zeng, L. Sun, Y.-F. Zheng et al., Corrosion and characterisation of dual phase Mg–Li–Ca alloy in Hank’s solution: the influence of microstructural features. Corros. Sci. 79, 69–82 (2014)CrossRef R.-C. Zeng, L. Sun, Y.-F. Zheng et al., Corrosion and characterisation of dual phase Mg–Li–Ca alloy in Hank’s solution: the influence of microstructural features. Corros. Sci. 79, 69–82 (2014)CrossRef
43.
go back to reference H. Fukuda, J.A. Szpunar, K. Kondoh et al., The influence of carbon nanotubes on the corrosion behaviour of AZ31B magnesium alloy. Corros. Sci. 52(12), 3917–3923 (2010)CrossRef H. Fukuda, J.A. Szpunar, K. Kondoh et al., The influence of carbon nanotubes on the corrosion behaviour of AZ31B magnesium alloy. Corros. Sci. 52(12), 3917–3923 (2010)CrossRef
44.
go back to reference G.L. Song, A. Atrens, Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater. 1(1), 11–33 (1999)CrossRef G.L. Song, A. Atrens, Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater. 1(1), 11–33 (1999)CrossRef
45.
go back to reference N.G. Wang, R.C. Wang, Y. Feng et al., Discharge and and corrosion behaviour of Mg-Li-Al-Ce-Y-Zn alloy as the anode for Mg-air battery. Corros. Sci. 112, 13–24 (2016)CrossRef N.G. Wang, R.C. Wang, Y. Feng et al., Discharge and and corrosion behaviour of Mg-Li-Al-Ce-Y-Zn alloy as the anode for Mg-air battery. Corros. Sci. 112, 13–24 (2016)CrossRef
46.
go back to reference Y. Li, H. Dai, Recent advances in zinc-air batteries. Chem. Soc. Rev. 43(15), 5257–5275 (2014)CrossRef Y. Li, H. Dai, Recent advances in zinc-air batteries. Chem. Soc. Rev. 43(15), 5257–5275 (2014)CrossRef
48.
go back to reference M. Maja, C. Orecchia, M. Strano et al., Effect of structure of the electrical performance of gas diffusion electrodes for metal air batteries. Electrochim. Acta 46(2), 423–432 (2000)CrossRef M. Maja, C. Orecchia, M. Strano et al., Effect of structure of the electrical performance of gas diffusion electrodes for metal air batteries. Electrochim. Acta 46(2), 423–432 (2000)CrossRef
49.
go back to reference S.-W. Eom, C.-W. Lee, M.-S. Yun et al., The roles and electrochemical characterizations of activated carbon in zinc air battery cathodes. Electrochim. Acta 52(4), 1592–1595 (2006)CrossRef S.-W. Eom, C.-W. Lee, M.-S. Yun et al., The roles and electrochemical characterizations of activated carbon in zinc air battery cathodes. Electrochim. Acta 52(4), 1592–1595 (2006)CrossRef
50.
go back to reference K. Tomantschger, R. Findlay, M. Hanson et al., Degradation modes of alkaline fuel cells and their components. J. Power Sources 39(1), 21–41 (1992)CrossRef K. Tomantschger, R. Findlay, M. Hanson et al., Degradation modes of alkaline fuel cells and their components. J. Power Sources 39(1), 21–41 (1992)CrossRef
52.
go back to reference H.Q. Li, G.Q. Sun, N. Li et al., Design and preparation of highly active Pt-Pd/C catalyst for the oxygen reduction reaction. J. Phys. Chem. C 111(15), 5605–5617 (2007)CrossRef H.Q. Li, G.Q. Sun, N. Li et al., Design and preparation of highly active Pt-Pd/C catalyst for the oxygen reduction reaction. J. Phys. Chem. C 111(15), 5605–5617 (2007)CrossRef
53.
go back to reference G.L. Li, L.H. Jiang, Q. Jiang et al., Preparation and characterization of PdxAgy/C electrocatalysts for ethanol electrooxidation reaction in alkaline media. Electrochim. Acta 56(22), 7703–7711 (2011)CrossRef G.L. Li, L.H. Jiang, Q. Jiang et al., Preparation and characterization of PdxAgy/C electrocatalysts for ethanol electrooxidation reaction in alkaline media. Electrochim. Acta 56(22), 7703–7711 (2011)CrossRef
54.
go back to reference L.Z. Yuan, Z. Yan, L.H. Jiang et al., Gold-iridium bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. J. Energy Chem. 25(5), 805–810 (2016)CrossRef L.Z. Yuan, Z. Yan, L.H. Jiang et al., Gold-iridium bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. J. Energy Chem. 25(5), 805–810 (2016)CrossRef
55.
go back to reference L.Z. Yuan, L.H. Jiang, T.R. Zhang et al., Electrochemically synthesized freestanding 3D nanoporous silver electrode with high electrocatalytic activity. Catal. Sci. Technol. 6(19), 7163–7171 (2016)CrossRef L.Z. Yuan, L.H. Jiang, T.R. Zhang et al., Electrochemically synthesized freestanding 3D nanoporous silver electrode with high electrocatalytic activity. Catal. Sci. Technol. 6(19), 7163–7171 (2016)CrossRef
56.
go back to reference D.U. Lee, P. Xu, Z.P. Cano et al., Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal-air batteries. J. Mater. Chem. A 4(19), 7107–7134 (2016)CrossRef D.U. Lee, P. Xu, Z.P. Cano et al., Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal-air batteries. J. Mater. Chem. A 4(19), 7107–7134 (2016)CrossRef
57.
go back to reference J.S. Guo, A. Hsu, D. Chu et al., Improving oxygen reduction reaction activities on carbon-supported Ag nanoparticles in alkaline solutions. J. Phys. Chem. C 114(10), 4324–4330 (2010)CrossRef J.S. Guo, A. Hsu, D. Chu et al., Improving oxygen reduction reaction activities on carbon-supported Ag nanoparticles in alkaline solutions. J. Phys. Chem. C 114(10), 4324–4330 (2010)CrossRef
58.
go back to reference J.J. Han, N. Li, T.Y. Zhang, Ag/C nanoparticles as an cathode catalyst for a zinc-air battery with a flowing alkaline electrolyte. J. Power Sources 193(2), 885–889 (2009)CrossRef J.J. Han, N. Li, T.Y. Zhang, Ag/C nanoparticles as an cathode catalyst for a zinc-air battery with a flowing alkaline electrolyte. J. Power Sources 193(2), 885–889 (2009)CrossRef
59.
go back to reference V. Neburchilov, H. Wang, J.J. Martin et al., A review on air cathodes for zinc–air fuel cells. J. Power Sources 195(5), 1271–1291 (2010)CrossRef V. Neburchilov, H. Wang, J.J. Martin et al., A review on air cathodes for zinc–air fuel cells. J. Power Sources 195(5), 1271–1291 (2010)CrossRef
60.
go back to reference J. Liu, J. Liu, W. Song et al., The role of electronic interaction in the use of Ag and Mn3O4 hybrid nanocrystals covalently coupled with carbon as advanced oxygen reduction electrocatalysts. J. Mater. Chem. A 2(41), 17477–17488 (2014)CrossRef J. Liu, J. Liu, W. Song et al., The role of electronic interaction in the use of Ag and Mn3O4 hybrid nanocrystals covalently coupled with carbon as advanced oxygen reduction electrocatalysts. J. Mater. Chem. A 2(41), 17477–17488 (2014)CrossRef
61.
go back to reference Y. Wang, X. Ma, L. Lu et al., Carbon supported MnOx–Co3O4 as cathode catalyst for oxygen reduction reaction in alkaline media. Int. J. Hydrogen Energy 38(31), 13611–13616 (2013)CrossRef Y. Wang, X. Ma, L. Lu et al., Carbon supported MnOx–Co3O4 as cathode catalyst for oxygen reduction reaction in alkaline media. Int. J. Hydrogen Energy 38(31), 13611–13616 (2013)CrossRef
62.
go back to reference J. Lamminen, J. Kivisaari, M.J. Lampinen et al., Preparation of air electrodes and long run tests. J. Electrochem. Soc. 138(4), 905–908 (1991)CrossRef J. Lamminen, J. Kivisaari, M.J. Lampinen et al., Preparation of air electrodes and long run tests. J. Electrochem. Soc. 138(4), 905–908 (1991)CrossRef
63.
go back to reference J. Liu, L.H. Jiang, Q.W. Tang et al., Coupling effect between cobalt oxides and carbon for oxygen reduction reaction. ChemSusChem 5(12), 2315–2318 (2012)CrossRef J. Liu, L.H. Jiang, Q.W. Tang et al., Coupling effect between cobalt oxides and carbon for oxygen reduction reaction. ChemSusChem 5(12), 2315–2318 (2012)CrossRef
64.
go back to reference Y. Liang, Y. Li, H. Wang et al., Co(3)O(4) nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10(10), 780–786 (2011)CrossRef Y. Liang, Y. Li, H. Wang et al., Co(3)O(4) nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10(10), 780–786 (2011)CrossRef
65.
go back to reference Y. Liang, H. Wang, P. Diao et al., Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J. Am. Chem. Soc. 134(38), 15849–15857 (2012)CrossRef Y. Liang, H. Wang, P. Diao et al., Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J. Am. Chem. Soc. 134(38), 15849–15857 (2012)CrossRef
66.
go back to reference L.Z. Gu, L.H. Jiang, X.N. Li et al., A Fe-N-C catalyst with highly dispersed iron in carbon for oxygen reduction reaction and its application in direct methanol fuel cells. Chin. J. Catal. 37(4), 539–548 (2016)CrossRef L.Z. Gu, L.H. Jiang, X.N. Li et al., A Fe-N-C catalyst with highly dispersed iron in carbon for oxygen reduction reaction and its application in direct methanol fuel cells. Chin. J. Catal. 37(4), 539–548 (2016)CrossRef
67.
go back to reference S.J. Guo, S. Zhang, S.H. Sun, Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew. Chem. Int. Ed. 52(33), 8526–8544 (2013)CrossRef S.J. Guo, S. Zhang, S.H. Sun, Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew. Chem. Int. Ed. 52(33), 8526–8544 (2013)CrossRef
68.
go back to reference M. Ferrandon, A.J. Kropf, D.J. Myers et al., Multitechnique characterization of a polyaniline-iron-carbon oxygen reduction catalyst. J. Phys. Chem. C 116(30), 16001–16013 (2012)CrossRef M. Ferrandon, A.J. Kropf, D.J. Myers et al., Multitechnique characterization of a polyaniline-iron-carbon oxygen reduction catalyst. J. Phys. Chem. C 116(30), 16001–16013 (2012)CrossRef
69.
go back to reference X. Zhang, Secondary batteries—zinc system|zinc electrodes: overview, in Encyclopedia of Electrochemical Power Sources (2009) X. Zhang, Secondary batteries—zinc system|zinc electrodes: overview, in Encyclopedia of Electrochemical Power Sources (2009)
70.
go back to reference X.-Y. Liu, X.-Z. Xu, Mesoscopic numerical computation model of air-diffusion electrode of metal/air batteries. Appl. Math. Mech. 34(5), 571–576 (2013)CrossRef X.-Y. Liu, X.-Z. Xu, Mesoscopic numerical computation model of air-diffusion electrode of metal/air batteries. Appl. Math. Mech. 34(5), 571–576 (2013)CrossRef
71.
go back to reference S. Zaromb, The use and behavior of aluminum anodes in alkaline primary batteries. J. Electrochem. Soc. 109(12), 1125–1130 (1962)CrossRef S. Zaromb, The use and behavior of aluminum anodes in alkaline primary batteries. J. Electrochem. Soc. 109(12), 1125–1130 (1962)CrossRef
72.
go back to reference R.J. Coin, Metal hydroxide crystallized and filter (1991) R.J. Coin, Metal hydroxide crystallized and filter (1991)
73.
go back to reference T. Zhang, Z. Tao, J. Chen, Magnesium-air batteries: from principle to application. Mater. Horiz. 1(2), 196–206 (2014)CrossRef T. Zhang, Z. Tao, J. Chen, Magnesium-air batteries: from principle to application. Mater. Horiz. 1(2), 196–206 (2014)CrossRef
74.
go back to reference T.B. Reddy, Linden’s Handbook of batteries, 4th edn. (2011) T.B. Reddy, Linden’s Handbook of batteries, 4th edn. (2011)
75.
go back to reference M. Mokhtar, M.Z.M. Talib, E.H. Majlan, et al., Recent developments in materials for aluminum–air batteries: a review. J. Ind. Eng. Chem. 32(Supplement C), 1–20 (2015) M. Mokhtar, M.Z.M. Talib, E.H. Majlan, et al., Recent developments in materials for aluminum–air batteries: a review. J. Ind. Eng. Chem. 32(Supplement C), 1–20 (2015)
76.
go back to reference S. Sathyanarayana, N. Munichandraiah, A new magnesium—air cell for long-life applications. J. Appl. Electrochem. 11(1), 33–39 (1981)CrossRef S. Sathyanarayana, N. Munichandraiah, A new magnesium—air cell for long-life applications. J. Appl. Electrochem. 11(1), 33–39 (1981)CrossRef
77.
go back to reference K.F. Blurton, A.F. Sammells, Metal/air batteries: their status and potential—a review. J. Power Sources 4(4), 263–279 (1979)CrossRef K.F. Blurton, A.F. Sammells, Metal/air batteries: their status and potential—a review. J. Power Sources 4(4), 263–279 (1979)CrossRef
78.
go back to reference C.-C. Yang, S.-J. Lin, Alkaline composite PEO–PVA–glass-fibre-mat polymer electrolyte for Zn–air battery. J. Power Sources 112(2), 497–503 (2002)CrossRef C.-C. Yang, S.-J. Lin, Alkaline composite PEO–PVA–glass-fibre-mat polymer electrolyte for Zn–air battery. J. Power Sources 112(2), 497–503 (2002)CrossRef
79.
go back to reference Z. Zhang, C. Zuo, Z. Liu, et al., All-solid-state Al–air batteries with polymer alkaline gel electrolyte. J. Power Sources, 251(Supplement C), 470–475 (2014) Z. Zhang, C. Zuo, Z. Liu, et al., All-solid-state Al–air batteries with polymer alkaline gel electrolyte. J. Power Sources, 251(Supplement C), 470–475 (2014)
80.
go back to reference D.D. Macdonald, C. English, Development of anodes for aluminium/air batteries—solution phase inhibition of corrosion. J. Appl. Electrochem. 20(3), 405–417 (1990)CrossRef D.D. Macdonald, C. English, Development of anodes for aluminium/air batteries—solution phase inhibition of corrosion. J. Appl. Electrochem. 20(3), 405–417 (1990)CrossRef
81.
go back to reference R.S.M. Patnaik, S. Ganesh, G. Ashok et al., Heat management in aluminium/air batteries: sources of heat. J. Power Sources 50(3), 331–342 (1994)CrossRef R.S.M. Patnaik, S. Ganesh, G. Ashok et al., Heat management in aluminium/air batteries: sources of heat. J. Power Sources 50(3), 331–342 (1994)CrossRef
82.
go back to reference A.M. Abdel-Gaber, E. Khamis, H. Abo-Eldahab et al., Novel package for inhibition of aluminium corrosion in alkaline solutions. Mater. Chem. Phys. 124(1), 773–779 (2010)CrossRef A.M. Abdel-Gaber, E. Khamis, H. Abo-Eldahab et al., Novel package for inhibition of aluminium corrosion in alkaline solutions. Mater. Chem. Phys. 124(1), 773–779 (2010)CrossRef
83.
go back to reference N.A.F. Al-Rawashdeh, A.K. Maayta, Cationic surfactant as corrosion inhibitor for aluminum in acidic and basic solutions. Anti-Corros. Methods Mater. 52(3), 160–166 (2005)CrossRef N.A.F. Al-Rawashdeh, A.K. Maayta, Cationic surfactant as corrosion inhibitor for aluminum in acidic and basic solutions. Anti-Corros. Methods Mater. 52(3), 160–166 (2005)CrossRef
84.
go back to reference Z. Sun, H. Lu, Q. Hong et al., Evaluation of an alkaline electrolyte system for Al-Air battery. Ecs Electrochem. Lett. 4(12), A133–A136 (2015)CrossRef Z. Sun, H. Lu, Q. Hong et al., Evaluation of an alkaline electrolyte system for Al-Air battery. Ecs Electrochem. Lett. 4(12), A133–A136 (2015)CrossRef
85.
go back to reference D. Gelman, I. Lasman, S. Elfimchev, et al., Aluminum corrosion mitigation in alkaline electrolytes containing hybrid inorganic/organic inhibitor system for power sources applications. J. Power Sources, 285(Supplement C), 100–108 (2015) D. Gelman, I. Lasman, S. Elfimchev, et al., Aluminum corrosion mitigation in alkaline electrolytes containing hybrid inorganic/organic inhibitor system for power sources applications. J. Power Sources, 285(Supplement C), 100–108 (2015)
86.
go back to reference Y. Nie, J. Gao, E. Wang, et al., An effective hybrid organic/inorganic inhibitor for alkaline aluminum-air fuel cells. Electrochimica Acta, 248(Supplement C), 478–485 (2017) Y. Nie, J. Gao, E. Wang, et al., An effective hybrid organic/inorganic inhibitor for alkaline aluminum-air fuel cells. Electrochimica Acta, 248(Supplement C), 478–485 (2017)
87.
go back to reference J.S. Lee, T.K. Sun, R. Cao et al., Metal-air batteries with high energy density: Li–Air versus Zn–Air. Adv. Energy Mater. 1(1), 34–50 (2011)CrossRef J.S. Lee, T.K. Sun, R. Cao et al., Metal-air batteries with high energy density: Li–Air versus Zn–Air. Adv. Energy Mater. 1(1), 34–50 (2011)CrossRef
88.
go back to reference J. Goldstein, I. Brown, B. Koretz, New developments in the Electric Fuel Ltd. zinc/air system. J. Power Sources 80(1–2), 171–179 (1999)CrossRef J. Goldstein, I. Brown, B. Koretz, New developments in the Electric Fuel Ltd. zinc/air system. J. Power Sources 80(1–2), 171–179 (1999)CrossRef
89.
go back to reference T. Huh, G. Savaskan, J.W. Evans, Further studies of a zinc-air cell employing a packed bed anode part II: regeneration of zinc particles and electrolyte by fluidized bed electrodeposition. J. Appl. Electrochem. 22(10), 916–921 (1992)CrossRef T. Huh, G. Savaskan, J.W. Evans, Further studies of a zinc-air cell employing a packed bed anode part II: regeneration of zinc particles and electrolyte by fluidized bed electrodeposition. J. Appl. Electrochem. 22(10), 916–921 (1992)CrossRef
90.
go back to reference G. Savaskan, T. Huh, J.W. Evans, Further studies of a zinc-air cell employing a packed bed anode part I: discharge. J. Appl. Electrochem. 22(10), 909–915 (1992)CrossRef G. Savaskan, T. Huh, J.W. Evans, Further studies of a zinc-air cell employing a packed bed anode part I: discharge. J. Appl. Electrochem. 22(10), 909–915 (1992)CrossRef
91.
go back to reference S.I. Smedley, X.G. Zhang, A regenerative zinc–air fuel cell. J. Power Sources 165(2), 897–904 (2007)CrossRef S.I. Smedley, X.G. Zhang, A regenerative zinc–air fuel cell. J. Power Sources 165(2), 897–904 (2007)CrossRef
92.
go back to reference X.G. Zhang, Secondary batteries—zinc system|zinc electrodes: overview. Encycl. Electrochem. Power Sources 15(7), 454–468 (2009)CrossRef X.G. Zhang, Secondary batteries—zinc system|zinc electrodes: overview. Encycl. Electrochem. Power Sources 15(7), 454–468 (2009)CrossRef
93.
go back to reference A.V. Ilyukhina, B.V. Kleymenov, A.Z. Zhuk, Development and study of aluminum-air electrochemical generator and its main components. J. Power Sources, 342 (2017) A.V. Ilyukhina, B.V. Kleymenov, A.Z. Zhuk, Development and study of aluminum-air electrochemical generator and its main components. J. Power Sources, 342 (2017)
95.
go back to reference Ø. Hasvold, H. Henriksen, E. Melv˦R, et al., Sea-water battery for subsea control systems. J. Power Sources 65(1), 253–261 (1997) Ø. Hasvold, H. Henriksen, E. Melv˦R, et al., Sea-water battery for subsea control systems. J. Power Sources 65(1), 253–261 (1997)
96.
go back to reference L.F. Li, Hybridized magnesium air fuel cell with Ni-Zn battery or electrochemical capacitor as the ideal energy source for USV sensor payloads (2004) L.F. Li, Hybridized magnesium air fuel cell with Ni-Zn battery or electrochemical capacitor as the ideal energy source for USV sensor payloads (2004)
Metadata
Title
Research and Development of Metal-Air Fuel Cells
Authors
Erdong Wang
Zhao Yan
Qianfeng Liu
Jianxin Gao
Min Liu
Gongquan Sun
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-71371-7_9