Skip to main content
Top
Published in: Wireless Personal Communications 1/2022

22-02-2021

Research on Wind Turbines Fault Diagnosis Technology Based on CMS Data Feature Extraction

Authors: Shiyao QIN, Ruiming WANG, Deyi FU

Published in: Wireless Personal Communications | Issue 1/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As a rich clean and environmentally friendly renewable resources, wind energy has emerged as a strategic choice for countries around the world. Because the wind turbines often operate in severe working conditions such as variable load and large temperature difference they are prone to failures and possible shutdowns. The shutdowns however seriously affect the economic benefits of the wind turbines. Initiative maintenance has become a worldwide recognized scientific method for planning and determining preventive maintenance work, the implementation of this strategy relies on real-time condition monitoring and fault signal identification methods. The condition monitoring of wind turbine can help master the health state and power generation performance of wind turbine, so as to timely formulate maintenance strategies and adopt technical modification measures to improve power generation performance, reduce the down time of wind turbine, avoid the occurrence of major faults, save maintenance cost and improve power generation capacity. Therefore, a condition monitoring system is built on a wind turbine of Zhangjiakou, and a systematic signal analysis method is proposed, time-domain synchronous averaging technology, based on variable period, impulse signal feature extraction technology based on Teager and signal decomposition technology based on CEEMD. The proposed method realizes the signal analysis and feature extraction of non-stationary nonlinear, weak signal and frequency aliasing signals, and successfully diagnose the gearbox secondary meshing failure during the long-term monitoring. This confirms that the monitoring system methods and signal analysis technology proposed in this paper can effectively realize the condition monitoring and fault diagnosis of wind turbines.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Jauch, C., Sørensen, P., Norheim, I., et al. (2007). Simulation of the impact of wind power on the transient fault behavioFr of the Nordic power system[J]. Electric power systems Research, 77(2), 135–144.CrossRef Jauch, C., Sørensen, P., Norheim, I., et al. (2007). Simulation of the impact of wind power on the transient fault behavioFr of the Nordic power system[J]. Electric power systems Research, 77(2), 135–144.CrossRef
2.
go back to reference Ding, H., & Kahraman, A. (2007). Interactions between nonlinear spur gear dynamics and surface wear[J]. Journal of Sound & Vibration, 37(3), 662–679.CrossRef Ding, H., & Kahraman, A. (2007). Interactions between nonlinear spur gear dynamics and surface wear[J]. Journal of Sound & Vibration, 37(3), 662–679.CrossRef
3.
go back to reference Herbert, G. M. J., Iniyan, S., & Goic, R. (2010). Performance, reliability and failure analysis of wind farm in a developing country[J]. Renewable Energy, 35(12), 2739–2751.CrossRef Herbert, G. M. J., Iniyan, S., & Goic, R. (2010). Performance, reliability and failure analysis of wind farm in a developing country[J]. Renewable Energy, 35(12), 2739–2751.CrossRef
4.
go back to reference Yang, W., Tavner, P. J., Crabtree, C. J., et al. (2010). Cost-effective condition monitoring for wind turbines[J]. IEEE Transactions on industrial electronics, 57(1), 263–271.CrossRef Yang, W., Tavner, P. J., Crabtree, C. J., et al. (2010). Cost-effective condition monitoring for wind turbines[J]. IEEE Transactions on industrial electronics, 57(1), 263–271.CrossRef
5.
go back to reference Ding, K., Zhu, X. Y., & Chen, Y. H. (2001). The vibration characteristics of typical gearbox faults and its diagnosis plan[J]. Journal of Vibration and Shock, 20(3), 7–12. Ding, K., Zhu, X. Y., & Chen, Y. H. (2001). The vibration characteristics of typical gearbox faults and its diagnosis plan[J]. Journal of Vibration and Shock, 20(3), 7–12.
6.
go back to reference Fan, W., & Liu, X. G. (2011). Design of PC104-based wind turbine state monitoring system[J]. Electric Power Automation Equipment, 31(12), 106–109. Fan, W., & Liu, X. G. (2011). Design of PC104-based wind turbine state monitoring system[J]. Electric Power Automation Equipment, 31(12), 106–109.
7.
go back to reference Tang, G. J., & Wang, X. L. (2015). Adaptive maximum correlated kurtosis deconvolution method and its application on incipient fault diagnosis of bearing[J]. Proceedings of the CSEE, 35(6), 1436–1444. Tang, G. J., & Wang, X. L. (2015). Adaptive maximum correlated kurtosis deconvolution method and its application on incipient fault diagnosis of bearing[J]. Proceedings of the CSEE, 35(6), 1436–1444.
8.
go back to reference Harmouche, J., Delpha, C., & Diallo, D. (2015). Incipient fault detection and diagnosis based on Kullback-Leibler divergence using Principal Component Analysis: Part I[J]. Signal Processing, 109(1), 334–344.CrossRef Harmouche, J., Delpha, C., & Diallo, D. (2015). Incipient fault detection and diagnosis based on Kullback-Leibler divergence using Principal Component Analysis: Part I[J]. Signal Processing, 109(1), 334–344.CrossRef
9.
go back to reference Liu, X. Q., Wang, F., Shi, W. G., et al. (2010). Operation Condition classification method for wind turbine based on support vector machine[J]. ACTA Energiae Solaris Sinica, 31(9), 1191–1197. Liu, X. Q., Wang, F., Shi, W. G., et al. (2010). Operation Condition classification method for wind turbine based on support vector machine[J]. ACTA Energiae Solaris Sinica, 31(9), 1191–1197.
10.
go back to reference Tang, B., Liu, W., & Song, T. (2010). Wind turbine fault diagnosis based on Morlet wavelet transformation and Wigner-Ville distribution[J]. Renewable Energy, 35(12), 2862–2866.CrossRef Tang, B., Liu, W., & Song, T. (2010). Wind turbine fault diagnosis based on Morlet wavelet transformation and Wigner-Ville distribution[J]. Renewable Energy, 35(12), 2862–2866.CrossRef
11.
go back to reference Hameed, Z., Hong, Y. S., Cho, Y. M., et al. (2009). Condition monitoring and fault detection of wind turbines and related algorithms: A review[J]. Renewable and Sustainable Energy Reviews, 13, 1–39.CrossRef Hameed, Z., Hong, Y. S., Cho, Y. M., et al. (2009). Condition monitoring and fault detection of wind turbines and related algorithms: A review[J]. Renewable and Sustainable Energy Reviews, 13, 1–39.CrossRef
12.
go back to reference Chaari, F., Fakhfakh, T., & Haddar, M. (2006). Dynamic analysis of a planetary gear failure caused by tooth pitting and cracking[J]. Journal of Failure Analysis and Prevention, 6(2), 52–60.CrossRef Chaari, F., Fakhfakh, T., & Haddar, M. (2006). Dynamic analysis of a planetary gear failure caused by tooth pitting and cracking[J]. Journal of Failure Analysis and Prevention, 6(2), 52–60.CrossRef
13.
go back to reference Chen, C. Z., Sun, X. M., Gu, Q., et al. (2013). Wavelet-based multifractal analysis of large scale wind turbine main bearing[J]. Journal of Renewable and Sustainable Energy, 5(1), 1–8.CrossRef Chen, C. Z., Sun, X. M., Gu, Q., et al. (2013). Wavelet-based multifractal analysis of large scale wind turbine main bearing[J]. Journal of Renewable and Sustainable Energy, 5(1), 1–8.CrossRef
14.
go back to reference Huang, Q., Jiang, D., Hong, L., et al. (2008). Application of wavelet neural networks on vibration fault diagnosis for wind turbine gearbox[C] (pp. 313–320). International Symposium on Neural Networks: Advances in neural networks. Springer-Verlag. Huang, Q., Jiang, D., Hong, L., et al. (2008). Application of wavelet neural networks on vibration fault diagnosis for wind turbine gearbox[C] (pp. 313–320). International Symposium on Neural Networks: Advances in neural networks. Springer-Verlag.
15.
go back to reference Tang, X. A., Xie, Z. M., Wang, Z., et al. (2007). Fault diagnosis of gearbox for wind turbine[J]. Noise and Vibration Control, 27(1), 120–124. Tang, X. A., Xie, Z. M., Wang, Z., et al. (2007). Fault diagnosis of gearbox for wind turbine[J]. Noise and Vibration Control, 27(1), 120–124.
16.
go back to reference Liu, W. Y., Zhang, W. H., Han, J. G., & Wang, G. F. (2012). A new wind turbine fault diagnosis method based on the local mean decomposition. Renewable Energy, 48, 411–415.CrossRef Liu, W. Y., Zhang, W. H., Han, J. G., & Wang, G. F. (2012). A new wind turbine fault diagnosis method based on the local mean decomposition. Renewable Energy, 48, 411–415.CrossRef
17.
go back to reference Randall R.B. (1986). Analysis techniques for diagnosis of gear and bearing faults[C]. In Proceedings of CAMDT 86. Shenyang China, 387–393. Randall R.B. (1986). Analysis techniques for diagnosis of gear and bearing faults[C]. In Proceedings of CAMDT 86. Shenyang China, 387–393.
18.
go back to reference Forestier, G., Lalys, F., Riffaud, L., Trelhu, B., & Jannin, P. (2012). Classification of surgical processes using dynamic time warping. Journal of biomedical informatics, 45(2), 255–264.CrossRef Forestier, G., Lalys, F., Riffaud, L., Trelhu, B., & Jannin, P. (2012). Classification of surgical processes using dynamic time warping. Journal of biomedical informatics, 45(2), 255–264.CrossRef
Metadata
Title
Research on Wind Turbines Fault Diagnosis Technology Based on CMS Data Feature Extraction
Authors
Shiyao QIN
Ruiming WANG
Deyi FU
Publication date
22-02-2021
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 1/2022
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08261-1

Other articles of this Issue 1/2022

Wireless Personal Communications 1/2022 Go to the issue