Skip to main content
Top
Published in: Rare Metals 3/2013

01-06-2013

Research progress in anisotropic magnetoresistance

Authors: Chong-Jun Zhao, Lei Ding, Jia-Shun HuangFu, Jing-Yan Zhang, Guang-Hua Yu

Published in: Rare Metals | Issue 3/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Anisotropic magnetoresistance (AMR) is an important physical phenomenon that has broad application potential in many relevant fields. Thus, AMR is one of the most attractive research directions in material science to date. In this article, we summarize the recent advances in AMR, including traditional permalloy AMR, tunnel AMR, ballistic AMR, Coulomb blockade AMR, anomalous AMR, and antiferromagnetic AMR. The existing problems and possible challenges in developing more advanced AMR were briefly discussed, and future development trends and prospects were also speculated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[2]
go back to reference Han X-F. Spintronic materials, physics and device designs. Physics. 2008;37(6):392. Han X-F. Spintronic materials, physics and device designs. Physics. 2008;37(6):392.
[3]
go back to reference Zutic L, Fabian J, Das Sarma S. Spintronics: fundamentals and applications. Rev Mod Phys. 2004;76(2):323.CrossRef Zutic L, Fabian J, Das Sarma S. Spintronics: fundamentals and applications. Rev Mod Phys. 2004;76(2):323.CrossRef
[4]
go back to reference Cai JW. Notes on spintronic devices. Prog Phys. 2006;26(2):180. Cai JW. Notes on spintronic devices. Prog Phys. 2006;26(2):180.
[5]
go back to reference William T. On the electro-dynamic qualities of metals: effect of magnetization on the electric conductivity of nickel and iron. Proc R Soc Lond. 1857;8:546. William T. On the electro-dynamic qualities of metals: effect of magnetization on the electric conductivity of nickel and iron. Proc R Soc Lond. 1857;8:546.
[6]
go back to reference Hunt RP. A magnetoresistive readout transducer. IEEE Trans Magn. 1971;7(1):150.CrossRef Hunt RP. A magnetoresistive readout transducer. IEEE Trans Magn. 1971;7(1):150.CrossRef
[7]
go back to reference Moran TJ, Dahlberg ED. Magnetoresistive sensor for weak magnetic fields. Appl Phys Lett. 1997;70(14):1894.CrossRef Moran TJ, Dahlberg ED. Magnetoresistive sensor for weak magnetic fields. Appl Phys Lett. 1997;70(14):1894.CrossRef
[8]
go back to reference Yeh T, Witcraft WF. Effect of magnetic anisotropy on signal and noise of NiFe magnetoresistive sensor. IEEE Trans Magn. 1995;31(6):3131.CrossRef Yeh T, Witcraft WF. Effect of magnetic anisotropy on signal and noise of NiFe magnetoresistive sensor. IEEE Trans Magn. 1995;31(6):3131.CrossRef
[9]
go back to reference Casselman TN, Hanka SA. Calculation of the performance of a magnetoresistive permalloy magnetic field sensor. IEEE Trans Magn. 1980;16(2):461.CrossRef Casselman TN, Hanka SA. Calculation of the performance of a magnetoresistive permalloy magnetic field sensor. IEEE Trans Magn. 1980;16(2):461.CrossRef
[10]
go back to reference Lin T, Gorman G, Tsang C. Antiferromagnetic and hard-magnetic stabilization schemes for magneto-resistive sensors. IEEE Trans Magn. 1996;32(5):3443.CrossRef Lin T, Gorman G, Tsang C. Antiferromagnetic and hard-magnetic stabilization schemes for magneto-resistive sensors. IEEE Trans Magn. 1996;32(5):3443.CrossRef
[11]
go back to reference Ueda M, Endoh M, Yoda H, Wakatsuki N. AC bias type magneto-resistive sensor. IEEE Trans Magn. 1990;26(5):1572.CrossRef Ueda M, Endoh M, Yoda H, Wakatsuki N. AC bias type magneto-resistive sensor. IEEE Trans Magn. 1990;26(5):1572.CrossRef
[12]
go back to reference Tsang C, Fontana R, Lin T, Heim DE, Speriosu VS, Gumey BA, Williams ML. Design, fabrication and testing of spin-valve read heads for high density recording. IEEE Trans Magn. 1994;30(6):3801.CrossRef Tsang C, Fontana R, Lin T, Heim DE, Speriosu VS, Gumey BA, Williams ML. Design, fabrication and testing of spin-valve read heads for high density recording. IEEE Trans Magn. 1994;30(6):3801.CrossRef
[13]
go back to reference Heim DE, Fontana RE Jr, Tsang C, Speriosu VS, Gurney BA, Williams ML. Design and operation of spin valve sensors. IEEE Trans Magn. 1994;30(2):316.CrossRef Heim DE, Fontana RE Jr, Tsang C, Speriosu VS, Gurney BA, Williams ML. Design and operation of spin valve sensors. IEEE Trans Magn. 1994;30(2):316.CrossRef
[14]
go back to reference Gould C, Rüster C, Jungwirth T, Girgis E, Schott GM, Giraud R, Brunner K, Schmidt G, Molenkamp LW. Tunneling anisotropic magnetoresistance: a spin-valve-like tunnel magnetoresistance using a single magnetic layer. Phys Rev Lett. 2004;93(11):117203.CrossRef Gould C, Rüster C, Jungwirth T, Girgis E, Schott GM, Giraud R, Brunner K, Schmidt G, Molenkamp LW. Tunneling anisotropic magnetoresistance: a spin-valve-like tunnel magnetoresistance using a single magnetic layer. Phys Rev Lett. 2004;93(11):117203.CrossRef
[15]
go back to reference Velev J, Sabirianov RF, Jaswal SS, Tsymbal EY. Ballistic anisotropic magnetoresistance. Phys Rev Lett. 2005;94(12):127203.CrossRef Velev J, Sabirianov RF, Jaswal SS, Tsymbal EY. Ballistic anisotropic magnetoresistance. Phys Rev Lett. 2005;94(12):127203.CrossRef
[16]
go back to reference Wunderlich J, Jungwirth T, Kaestner B, Irvine AC, Shick AB, Stone N, Wang K-Y, Rana U, Giddings AD, Foxon CT, Campion RP, Williams DA, Gallagher BL. Coulomb blockade anisotropic magnetoresistance effect in a (Ga, Mn)As single-electron transistor. Phys Rev Lett. 2006;97(7):077201.CrossRef Wunderlich J, Jungwirth T, Kaestner B, Irvine AC, Shick AB, Stone N, Wang K-Y, Rana U, Giddings AD, Foxon CT, Campion RP, Williams DA, Gallagher BL. Coulomb blockade anisotropic magnetoresistance effect in a (Ga, Mn)As single-electron transistor. Phys Rev Lett. 2006;97(7):077201.CrossRef
[17]
go back to reference Li RW, Wang HB, Wang XW, Yu XZ, Matsui Y, Cheng Z-H, Shen B-G, Plummer EW, Zhang JD. Anomalously large anisotropic magnetoresistance in a perovskite manganite. Proc Natl Acad Sci USA. 2009;106(34):14224.CrossRef Li RW, Wang HB, Wang XW, Yu XZ, Matsui Y, Cheng Z-H, Shen B-G, Plummer EW, Zhang JD. Anomalously large anisotropic magnetoresistance in a perovskite manganite. Proc Natl Acad Sci USA. 2009;106(34):14224.CrossRef
[18]
go back to reference Park BG, Wunderlich J, Martí X, Holý V, Kurosaki Y, Yamada M, Yamamoto H, Nishide A, Hayakawa J, Takahashi H, Shick AB, Jungwirth T. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junctions. Nat Mater. 2011;10(5):347.CrossRef Park BG, Wunderlich J, Martí X, Holý V, Kurosaki Y, Yamada M, Yamamoto H, Nishide A, Hayakawa J, Takahashi H, Shick AB, Jungwirth T. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junctions. Nat Mater. 2011;10(5):347.CrossRef
[19]
go back to reference Fitzsimmons MR, Silva TJ, Crawford TM. Surface oxidation of permalloy thin films. Phys Rev B. 2006;73(1):014420.CrossRef Fitzsimmons MR, Silva TJ, Crawford TM. Surface oxidation of permalloy thin films. Phys Rev B. 2006;73(1):014420.CrossRef
[20]
go back to reference Volmera M, Neamtu J. Magnetic field sensors based on permalloy multilayers and nanogranular films. J Magn Magn Mater. 2007;316(2):e265.CrossRef Volmera M, Neamtu J. Magnetic field sensors based on permalloy multilayers and nanogranular films. J Magn Magn Mater. 2007;316(2):e265.CrossRef
[21]
go back to reference Dimitrova P, Andreev S, Popova L. Thin film integrated AMR sensor for linear position measurements. Sens Actuators A. 2008;147(2):387.CrossRef Dimitrova P, Andreev S, Popova L. Thin film integrated AMR sensor for linear position measurements. Sens Actuators A. 2008;147(2):387.CrossRef
[22]
go back to reference Fassbender J, Von Borany J, Mucklich A, Potzger K, Möller W, McCord J, Schultz L, Mattheis R. Structural and magnetic modification of Cr-implanted permalloy. Phys Rev B. 2006;73(18):184410.CrossRef Fassbender J, Von Borany J, Mucklich A, Potzger K, Möller W, McCord J, Schultz L, Mattheis R. Structural and magnetic modification of Cr-implanted permalloy. Phys Rev B. 2006;73(18):184410.CrossRef
[23]
go back to reference Ding L, Teng J, Zhan Q, Feng C, Li Mi-H, Han G, Wang L-J, Yu G-H, Wang S-Y. Enhancement of the magnetic field sensitivity in Al2O3 encapsulated NiFe films with anisotropic magnetoresistance. Appl Phys Lett. 2009;94(16):162506.CrossRef Ding L, Teng J, Zhan Q, Feng C, Li Mi-H, Han G, Wang L-J, Yu G-H, Wang S-Y. Enhancement of the magnetic field sensitivity in Al2O3 encapsulated NiFe films with anisotropic magnetoresistance. Appl Phys Lett. 2009;94(16):162506.CrossRef
[24]
go back to reference Ding L, Teng J, Wang XC, Feng C, Jiang Y, Yu GH, Wang SG, Ward RCC. Designed synthesis of materials for high-sensitivity geomagnetic sensors. Appl Phys Lett. 2010;96(5):052515.CrossRef Ding L, Teng J, Wang XC, Feng C, Jiang Y, Yu GH, Wang SG, Ward RCC. Designed synthesis of materials for high-sensitivity geomagnetic sensors. Appl Phys Lett. 2010;96(5):052515.CrossRef
[25]
go back to reference Liu YF, Cai JW, Sun L. Large enhancement of anisotropic magnetoresistance and thermal stability in Ta/NiFe/Ta trilayers with interfacial Pt addition. Appl Phys Lett. 2010;96(9):092509.CrossRef Liu YF, Cai JW, Sun L. Large enhancement of anisotropic magnetoresistance and thermal stability in Ta/NiFe/Ta trilayers with interfacial Pt addition. Appl Phys Lett. 2010;96(9):092509.CrossRef
[26]
go back to reference Mitchell EN, Haukaas HB, Bale HD, Streeper JB. Compositional and thickness dependence of the ferromagnetic anisotropy in resistance of iron–nickel films. J Appl Phys. 1964;35(9):2604.CrossRef Mitchell EN, Haukaas HB, Bale HD, Streeper JB. Compositional and thickness dependence of the ferromagnetic anisotropy in resistance of iron–nickel films. J Appl Phys. 1964;35(9):2604.CrossRef
[27]
go back to reference Lee WY, Toney MF, Mauri D. High magnetoresistance in sputtered permalloy thin films through growth on seed layers of (Ni0.81Fe0.19)(1−x)Cr x . IEEE Trans Magn. 2000;36(1):381.CrossRef Lee WY, Toney MF, Mauri D. High magnetoresistance in sputtered permalloy thin films through growth on seed layers of (Ni0.81Fe0.19)(1−x)Cr x . IEEE Trans Magn. 2000;36(1):381.CrossRef
[28]
go back to reference Lee WY, Toney MF, Tameerug P, Allen E, Mauri D. High magnetoresistance permalloy films deposited on a thin NiFeCr or NiCr underlayer. J Appl Phys. 2000;87(9):6992.CrossRef Lee WY, Toney MF, Tameerug P, Allen E, Mauri D. High magnetoresistance permalloy films deposited on a thin NiFeCr or NiCr underlayer. J Appl Phys. 2000;87(9):6992.CrossRef
[29]
go back to reference Lin T, Mauri D, York B, Rice PM. Crystalline reconstruction in Ni–Cr–Fe/Ni–Fe films. Appl Phys Lett. 2004;84(3):386.CrossRef Lin T, Mauri D, York B, Rice PM. Crystalline reconstruction in Ni–Cr–Fe/Ni–Fe films. Appl Phys Lett. 2004;84(3):386.CrossRef
[30]
go back to reference Sheng S, Li W, Li MH, Yu GH. Investigation on interface of NiFeCr/NiFe/Ta films with high magnetic field sensitivity. Rare Met. 2012;31(1):22.CrossRef Sheng S, Li W, Li MH, Yu GH. Investigation on interface of NiFeCr/NiFe/Ta films with high magnetic field sensitivity. Rare Met. 2012;31(1):22.CrossRef
[31]
go back to reference Chen MM, Gharsallah N, Gorman GL, Latimer J. Ternary NiFeX as soft biasing film in a magnetoresistive sensor. J Appl Phys. 1991;69(8):5631.CrossRef Chen MM, Gharsallah N, Gorman GL, Latimer J. Ternary NiFeX as soft biasing film in a magnetoresistive sensor. J Appl Phys. 1991;69(8):5631.CrossRef
[32]
go back to reference Nagura H, Saito K, Takanashi K, Fujimori H. Influence of third elements on the anisotropic magnetoresistance in permalloy films. J Magn Magn Mater. 2000;212(1–2):53.CrossRef Nagura H, Saito K, Takanashi K, Fujimori H. Influence of third elements on the anisotropic magnetoresistance in permalloy films. J Magn Magn Mater. 2000;212(1–2):53.CrossRef
[33]
go back to reference Mao M, Leng Q, Huai Y, Johnson P, Miller M, Tong HC, Miloslavsky L, Qian C, Wang J, Hegde H. Characterization of ion beam and magnetron sputtered thin Ta/NiFe films. J Appl Phys. 1999;85(8):5780.CrossRef Mao M, Leng Q, Huai Y, Johnson P, Miller M, Tong HC, Miloslavsky L, Qian C, Wang J, Hegde H. Characterization of ion beam and magnetron sputtered thin Ta/NiFe films. J Appl Phys. 1999;85(8):5780.CrossRef
[34]
go back to reference Funaki H, Okamoto S, Kitakami O, Shimada Y. Improvement in magnetoresistance of very thin permalloy films by post-annealing. Jpn J Appl Phys. 1994;33(9B):L1304.CrossRef Funaki H, Okamoto S, Kitakami O, Shimada Y. Improvement in magnetoresistance of very thin permalloy films by post-annealing. Jpn J Appl Phys. 1994;33(9B):L1304.CrossRef
[35]
go back to reference Wu P, Wang F, Qiu H, Pan L, Tian Y. Effects of substrate temperature and annealing on the anisotropic magnetoresistive property of NiFe films. Rare Met. 2003;22(3):202. Wu P, Wang F, Qiu H, Pan L, Tian Y. Effects of substrate temperature and annealing on the anisotropic magnetoresistive property of NiFe films. Rare Met. 2003;22(3):202.
[36]
go back to reference Wang S, Gao T, Wang C, He J. Studies of anisotropic magnetoresistance and magnetic property of Ni81Fe19 ultra-thin films with the lower base vacuum. J Alloys Compd. 2013;554:405.CrossRef Wang S, Gao T, Wang C, He J. Studies of anisotropic magnetoresistance and magnetic property of Ni81Fe19 ultra-thin films with the lower base vacuum. J Alloys Compd. 2013;554:405.CrossRef
[37]
go back to reference Ding L, Wang L, Teng J, Yu GH. Effects of Al2O3 layer on performance of ultrathin permalloy films. Chin J Rare Met. 2009;33(1):26. Ding L, Wang L, Teng J, Yu GH. Effects of Al2O3 layer on performance of ultrathin permalloy films. Chin J Rare Met. 2009;33(1):26.
[38]
go back to reference Wang DW, Ding L, Wang L, Teng J, Yu GH. The effect of nano-oxide layers on the performance of permalloy films. Vac Electron. 2007;3(3):63. Wang DW, Ding L, Wang L, Teng J, Yu GH. The effect of nano-oxide layers on the performance of permalloy films. Vac Electron. 2007;3(3):63.
[39]
go back to reference Wang L, Zhang JZ, Wang LJ. Effect of nano-oxide layers on the magnetoresistance of ultrathin permalloy films. Rare Met. 2009;28(6):624.CrossRef Wang L, Zhang JZ, Wang LJ. Effect of nano-oxide layers on the magnetoresistance of ultrathin permalloy films. Rare Met. 2009;28(6):624.CrossRef
[40]
go back to reference Dieny B, Li M, Liao SH, Horng C, Ju K. Effect of interfacial specular electron reflection on the anisotropic magnetoresistance of magnetic thin films. J Appl Phys. 2000;88(7):4140.CrossRef Dieny B, Li M, Liao SH, Horng C, Ju K. Effect of interfacial specular electron reflection on the anisotropic magnetoresistance of magnetic thin films. J Appl Phys. 2000;88(7):4140.CrossRef
[41]
go back to reference Kamiguchi Y, Yuasa H, Fukuzawa H, Koui K, Iwasaki H, Sahashi M. CoFe specular spin valves with a nano oxide layer. In: 1999 IEEE International Magnetics Conference, Korea; 1999. Kamiguchi Y, Yuasa H, Fukuzawa H, Koui K, Iwasaki H, Sahashi M. CoFe specular spin valves with a nano oxide layer. In: 1999 IEEE International Magnetics Conference, Korea; 1999.
[42]
go back to reference Liu Y, Fu YQ, Jin C, Feng C. Discrepancy of the magnetic behaviors and crystalline structure on the Co/FeMn and FeMn/Co interfaces with ultrathin Pt spacer. Rare Met. 2010;29(5):473.CrossRef Liu Y, Fu YQ, Jin C, Feng C. Discrepancy of the magnetic behaviors and crystalline structure on the Co/FeMn and FeMn/Co interfaces with ultrathin Pt spacer. Rare Met. 2010;29(5):473.CrossRef
[43]
go back to reference Ding L, Qiu HZ, Li C, Xiang DP, Teng J, Yu GH. Control of spin-polarized electron magnetoresistance in Ta/NiFe/Ta films by intercalation of Au. J Phys D Appl Phys. 2013;46(2):025002.CrossRef Ding L, Qiu HZ, Li C, Xiang DP, Teng J, Yu GH. Control of spin-polarized electron magnetoresistance in Ta/NiFe/Ta films by intercalation of Au. J Phys D Appl Phys. 2013;46(2):025002.CrossRef
[44]
go back to reference Parkin SSP, Kaiser C, Panchula A, Rice PM, Hughes B, Samant M, Yang SH. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat Mater. 2004;3(12):862.CrossRef Parkin SSP, Kaiser C, Panchula A, Rice PM, Hughes B, Samant M, Yang SH. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat Mater. 2004;3(12):862.CrossRef
[45]
go back to reference Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat Mater. 2004;3(12):868.CrossRef Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat Mater. 2004;3(12):868.CrossRef
[46]
go back to reference Zhang SL, Teng J, Zhang JY, Liu Y, Li JW, Yu GH, Wang SG. Large enhancement of the anomalous Hall effect in Co/Pt multilayers sandwiched by MgO layers. Appl Phys Lett. 2010;97(22):222504.CrossRef Zhang SL, Teng J, Zhang JY, Liu Y, Li JW, Yu GH, Wang SG. Large enhancement of the anomalous Hall effect in Co/Pt multilayers sandwiched by MgO layers. Appl Phys Lett. 2010;97(22):222504.CrossRef
[47]
go back to reference Fukuma Y, Wang L, Idzuchi H, Takahashi S, Maekawa S, Otani YC. Giant enhancement of spin accumulation and long-distance spin precession in metallic lateral spin valves. Nat Mater. 2011;10:527.CrossRef Fukuma Y, Wang L, Idzuchi H, Takahashi S, Maekawa S, Otani YC. Giant enhancement of spin accumulation and long-distance spin precession in metallic lateral spin valves. Nat Mater. 2011;10:527.CrossRef
[48]
go back to reference Zhao C-J, Liu Y, Zhang J-Y, Sun L, Ding L, Zhang P, Wang B-Y, Cao X-Z, Yu G-H. Mechanism of magnetoresistance ratio enhancement in MgO/NiFe/MgO heterostructure by rapid thermal annealing. Appl Phys Lett. 2012;101(7):072404.CrossRef Zhao C-J, Liu Y, Zhang J-Y, Sun L, Ding L, Zhang P, Wang B-Y, Cao X-Z, Yu G-H. Mechanism of magnetoresistance ratio enhancement in MgO/NiFe/MgO heterostructure by rapid thermal annealing. Appl Phys Lett. 2012;101(7):072404.CrossRef
[49]
go back to reference Yakushiji K, Ernult F, Imamura H, Yamane K, Mitani S, Takanashi K, Takahashi S, Maekawa S, Fujimori H. Enhanced spin accumulation and novel magnetotransport in nanoparticles. Nat Mater. 2005;4(1):57.CrossRef Yakushiji K, Ernult F, Imamura H, Yamane K, Mitani S, Takanashi K, Takahashi S, Maekawa S, Fujimori H. Enhanced spin accumulation and novel magnetotransport in nanoparticles. Nat Mater. 2005;4(1):57.CrossRef
[50]
go back to reference Takahashi S, Maekawa S. Effect of coulomb blockade on magnetoresistance in ferromagnetic tunnel junctions. Phys Rev Lett. 1998;80(8):1758.CrossRef Takahashi S, Maekawa S. Effect of coulomb blockade on magnetoresistance in ferromagnetic tunnel junctions. Phys Rev Lett. 1998;80(8):1758.CrossRef
[51]
go back to reference Kakazei GN, Lopes AML, Pogorelov YuG, Santos JAM, Sousa JB, Freitas PP, Cardoso S, Snoeck E. Time-dependent transport effects in CoFe/Al2O3 discontinuous multilayers. J Appl Phys. 2000;87(9):6328.CrossRef Kakazei GN, Lopes AML, Pogorelov YuG, Santos JAM, Sousa JB, Freitas PP, Cardoso S, Snoeck E. Time-dependent transport effects in CoFe/Al2O3 discontinuous multilayers. J Appl Phys. 2000;87(9):6328.CrossRef
[52]
go back to reference Buh GH, Park JY, Kuk Y. Coulomb interaction among transporting charge carriers confined in two dimensions. J Appl Phys. 2008;104(8):083716.CrossRef Buh GH, Park JY, Kuk Y. Coulomb interaction among transporting charge carriers confined in two dimensions. J Appl Phys. 2008;104(8):083716.CrossRef
[53]
go back to reference Sukegawa H, Nakamura S, Hirohata A, Tezuka N, Inomata K. Significant magnetoresistance enhancement due to a cotunneling process in a double tunnel junction with single discontinuous ferromagnetic layer insertion. Phys Rev Lett. 2005;94(6):068304.CrossRef Sukegawa H, Nakamura S, Hirohata A, Tezuka N, Inomata K. Significant magnetoresistance enhancement due to a cotunneling process in a double tunnel junction with single discontinuous ferromagnetic layer insertion. Phys Rev Lett. 2005;94(6):068304.CrossRef
[54]
go back to reference Yang H, Yang SH, Parkin SSP. Crossover from Kondo-assisted suppression to Co-tunneling enhancement of tunneling magnetoresistance via ferromagnetic nanodots in MgO tunnel barriers. Nano Lett. 2008;8:340.CrossRef Yang H, Yang SH, Parkin SSP. Crossover from Kondo-assisted suppression to Co-tunneling enhancement of tunneling magnetoresistance via ferromagnetic nanodots in MgO tunnel barriers. Nano Lett. 2008;8:340.CrossRef
[55]
go back to reference Huangfu JS, Zhao CJ, Zhang JY, Li BH, Yu GH. Enhancement of anisotropic magnetoresistance in MgO/NiFe/MgO trilayers via NiFe nanoparticles in MgO layers. J Appl Phys. 2012;111(12):123903.CrossRef Huangfu JS, Zhao CJ, Zhang JY, Li BH, Yu GH. Enhancement of anisotropic magnetoresistance in MgO/NiFe/MgO trilayers via NiFe nanoparticles in MgO layers. J Appl Phys. 2012;111(12):123903.CrossRef
[56]
go back to reference Ding L, Teng J, Feng C, Li W, Li M, Zhang M, Yu GH, Xiang DP. An all-metal material for high-sensitivity geomagnetic sensors with improved magnetic stability by magnetostatic coupling. J Phys D Appl Phys. 2011;44(38):385001.CrossRef Ding L, Teng J, Feng C, Li W, Li M, Zhang M, Yu GH, Xiang DP. An all-metal material for high-sensitivity geomagnetic sensors with improved magnetic stability by magnetostatic coupling. J Phys D Appl Phys. 2011;44(38):385001.CrossRef
[57]
go back to reference Higo Y, Shimizu H, Tanaka M. Anisotropic tunnel magnetoresistance in GaMnAs/AlAs/GaMnAs ferromagnetic semiconductor tunnel junctions. Appl Phys Lett. 2001;89(11):6745. Higo Y, Shimizu H, Tanaka M. Anisotropic tunnel magnetoresistance in GaMnAs/AlAs/GaMnAs ferromagnetic semiconductor tunnel junctions. Appl Phys Lett. 2001;89(11):6745.
[58]
go back to reference Chiba D, Matsukura F, Ohno H. Tunneling magnetoresistance in (Ga, Mn)As-based heterostructures with a GaAs barrier. Phys E. 2004;21(2–4):966.CrossRef Chiba D, Matsukura F, Ohno H. Tunneling magnetoresistance in (Ga, Mn)As-based heterostructures with a GaAs barrier. Phys E. 2004;21(2–4):966.CrossRef
[59]
go back to reference Rüster C, Gould C, Jungwirth T, Sinova J, Schott GM, Giraud R, Brunner K, Schmidt G, Molenkamp LW. Very large tunneling anisotropic magnetoresistance of a (Ga, Mn)As/GaAs/(Ga, Mn)As stack. Phys Rev Lett. 2005;94(2):027203.CrossRef Rüster C, Gould C, Jungwirth T, Sinova J, Schott GM, Giraud R, Brunner K, Schmidt G, Molenkamp LW. Very large tunneling anisotropic magnetoresistance of a (Ga, Mn)As/GaAs/(Ga, Mn)As stack. Phys Rev Lett. 2005;94(2):027203.CrossRef
[60]
go back to reference Matos-Abiague A, Fabian J. Anisotropic tunneling magnetoresistance and tunneling anisotropic magnetoresistance: spin–orbit coupling in magnetic tunnel junctions. Phys Rev B. 2009;79(15):155303.CrossRef Matos-Abiague A, Fabian J. Anisotropic tunneling magnetoresistance and tunneling anisotropic magnetoresistance: spin–orbit coupling in magnetic tunnel junctions. Phys Rev B. 2009;79(15):155303.CrossRef
[61]
go back to reference Saito H, Yuasa S, Ando K. Origin of the tunnel anisotropic magnetoresistance in Ga1−x Mn x As/ZnSe/Ga1−x Mn x As magnetic tunnel junctions of II–VI/III–V heterostructures. Phys Rev Lett. 2005;95(8):086604.CrossRef Saito H, Yuasa S, Ando K. Origin of the tunnel anisotropic magnetoresistance in Ga1−x Mn x As/ZnSe/Ga1−x Mn x As magnetic tunnel junctions of II–VI/III–V heterostructures. Phys Rev Lett. 2005;95(8):086604.CrossRef
[62]
go back to reference Shick AB, Máca F, Mašek J, Jungwirth T. Prospect for room temperature tunneling anisotropic magnetoresistance effect: density of states anisotropies in CoPt systems. Phys Rev B. 2006;73(2):024418.CrossRef Shick AB, Máca F, Mašek J, Jungwirth T. Prospect for room temperature tunneling anisotropic magnetoresistance effect: density of states anisotropies in CoPt systems. Phys Rev B. 2006;73(2):024418.CrossRef
[63]
go back to reference Moser J, Matos-Abiague A, Schuh D, Wegscheider W, Fabian J, Weiss D. Tunneling anisotropic magnetoresistance and spin–orbit coupling in Fe/GaAs/Au tunnel junctions. Phys Rev Lett. 2007;99(5):056601.CrossRef Moser J, Matos-Abiague A, Schuh D, Wegscheider W, Fabian J, Weiss D. Tunneling anisotropic magnetoresistance and spin–orbit coupling in Fe/GaAs/Au tunnel junctions. Phys Rev Lett. 2007;99(5):056601.CrossRef
[64]
go back to reference Gao L, Jiang X, Yang S-H, Burton JD, Tsymbal Evgeny Y, Parkin Stuart SP. Bias voltage dependence of tunneling anisotropic magnetoresistance in magnetic tunnel junctions with MgO and Al2O3 tunnel barriers. Phys Rev Lett. 2007;99(22):226602.CrossRef Gao L, Jiang X, Yang S-H, Burton JD, Tsymbal Evgeny Y, Parkin Stuart SP. Bias voltage dependence of tunneling anisotropic magnetoresistance in magnetic tunnel junctions with MgO and Al2O3 tunnel barriers. Phys Rev Lett. 2007;99(22):226602.CrossRef
[65]
go back to reference Chantis AN, Belashchenko KD, Tsymbal EY, Schilfgaarde MV. Tunneling anisotropic magnetoresistance driven by resonant surface states: first-principles calculations on an Fe(001) surface. Phys Rev Lett. 2007;98(4):046601.CrossRef Chantis AN, Belashchenko KD, Tsymbal EY, Schilfgaarde MV. Tunneling anisotropic magnetoresistance driven by resonant surface states: first-principles calculations on an Fe(001) surface. Phys Rev Lett. 2007;98(4):046601.CrossRef
[66]
go back to reference Park BG, Wunderlich J, Williams DA, Joo SJ, Jung KY, Shin KH, Olejník K, Shick AB, Jungwirth T. Tunneling anisotropic magnetoresistance in multilayer-(Co/Pt)/AlO x /Pt structures. Phys Rev Lett. 2008;100(8):087204.CrossRef Park BG, Wunderlich J, Williams DA, Joo SJ, Jung KY, Shin KH, Olejník K, Shick AB, Jungwirth T. Tunneling anisotropic magnetoresistance in multilayer-(Co/Pt)/AlO x /Pt structures. Phys Rev Lett. 2008;100(8):087204.CrossRef
[67]
go back to reference Shick AB, Máca F, Ondráček M, Mryasov ON, Jungwirth T. Large magnetic anisotropy and tunneling anisotropic magnetoresistance in layered bimetallic nanostructures: case study of Mn/W(001). Phys Rev B. 2008;78(5):054413.CrossRef Shick AB, Máca F, Ondráček M, Mryasov ON, Jungwirth T. Large magnetic anisotropy and tunneling anisotropic magnetoresistance in layered bimetallic nanostructures: case study of Mn/W(001). Phys Rev B. 2008;78(5):054413.CrossRef
[68]
go back to reference Wimmer M, Lobenhofer M, Moser J, Matos-Abiague A, Schuh D, Wegscheider W, Fabian J, Richter K, Weiss D. Orbital effects on tunneling anisotropic magnetoresistance in Fe/GaAs/Au junctions. Phys Rev B. 2009;80(12):121301.CrossRef Wimmer M, Lobenhofer M, Moser J, Matos-Abiague A, Schuh D, Wegscheider W, Fabian J, Richter K, Weiss D. Orbital effects on tunneling anisotropic magnetoresistance in Fe/GaAs/Au junctions. Phys Rev B. 2009;80(12):121301.CrossRef
[69]
go back to reference Jia CL, Berakdar J. Tunnel anisotropic magnetoresistance of helimagnet tunnel junctions. Phys Rev B. 2010;81(5):052406.CrossRef Jia CL, Berakdar J. Tunnel anisotropic magnetoresistance of helimagnet tunnel junctions. Phys Rev B. 2010;81(5):052406.CrossRef
[70]
go back to reference Uemura T, Harada M, Akiho T, Matsuda K-I, Yamamoto M. Influence of GaAs surface structure on tunneling anisotropic magnetoresistance and magnetocrystalline anisotropy in epitaxial Co50Fe50/n-GaAs junctions. Appl Phys Lett. 2011;98(10):102503.CrossRef Uemura T, Harada M, Akiho T, Matsuda K-I, Yamamoto M. Influence of GaAs surface structure on tunneling anisotropic magnetoresistance and magnetocrystalline anisotropy in epitaxial Co50Fe50/n-GaAs junctions. Appl Phys Lett. 2011;98(10):102503.CrossRef
[71]
go back to reference Mark S, Dürrenfeld P, Pappert K, Ebel L, Brunner K, Gould C, Molenkamp LW. Fully electrical read–write device out of a ferromagnetic semiconductor. Phys Rev Lett. 2011;106(5):057204.CrossRef Mark S, Dürrenfeld P, Pappert K, Ebel L, Brunner K, Gould C, Molenkamp LW. Fully electrical read–write device out of a ferromagnetic semiconductor. Phys Rev Lett. 2011;106(5):057204.CrossRef
[72]
go back to reference He HT, Cao XC, Zhang T, Wang YQ, Wang JN. Systematic study of anisotropic magnetoresistance effect in (311)A GaMnAs films. J Appl Phys. 2010;107(6):063902.CrossRef He HT, Cao XC, Zhang T, Wang YQ, Wang JN. Systematic study of anisotropic magnetoresistance effect in (311)A GaMnAs films. J Appl Phys. 2010;107(6):063902.CrossRef
[73]
go back to reference Zhan Q-F, Vandezande S, Temst K, Haesendonck CV. Magnetic anisotropic and reversal in epitaxial Fe/MgO(001) films. Phys Rev B. 2009;80(9):094416.CrossRef Zhan Q-F, Vandezande S, Temst K, Haesendonck CV. Magnetic anisotropic and reversal in epitaxial Fe/MgO(001) films. Phys Rev B. 2009;80(9):094416.CrossRef
[74]
go back to reference Einwanger A, Ciorga M, Wurstbauer U, Schuh D, Wegscheider W, Weiss D. Tunneling anisotropic spin polarization in lateral (Ga, Mn)As/GaAs spin esaki diode devices. Appl Phys Lett. 2009;95(15):152101.CrossRef Einwanger A, Ciorga M, Wurstbauer U, Schuh D, Wegscheider W, Weiss D. Tunneling anisotropic spin polarization in lateral (Ga, Mn)As/GaAs spin esaki diode devices. Appl Phys Lett. 2009;95(15):152101.CrossRef
[75]
go back to reference Gould C, Mark S, Pappert K, Dengel RG, Wenisch J, Campion RP, Rushforth AW, Chiba D, Li Z, Liu X, Van Roy W, Ohno H, Furdyna JK, Gallagher B, Brunner K, Schmidt G, Molenkamp LW. An extensive comparison of anisotropic in MBE grown (Ga, Mn)As material. New J Phys. 2008;10(5):055077.CrossRef Gould C, Mark S, Pappert K, Dengel RG, Wenisch J, Campion RP, Rushforth AW, Chiba D, Li Z, Liu X, Van Roy W, Ohno H, Furdyna JK, Gallagher B, Brunner K, Schmidt G, Molenkamp LW. An extensive comparison of anisotropic in MBE grown (Ga, Mn)As material. New J Phys. 2008;10(5):055077.CrossRef
[76]
go back to reference Liu RS, Canali CM, Samuelson L, Pettersson H. Magnetoresistance studies on Co/AlO x /Au and Co/AlO x /Ni/Au tunnel structures. Appl Phys Lett. 2008;93(20):203107.CrossRef Liu RS, Canali CM, Samuelson L, Pettersson H. Magnetoresistance studies on Co/AlO x /Au and Co/AlO x /Ni/Au tunnel structures. Appl Phys Lett. 2008;93(20):203107.CrossRef
[77]
go back to reference Burton JD, Sabirianov RF, Velev JP, Mryasov ON, Tsymbal EY. Effect of tip resonances on tunneling anisotropic magnetoresistance in ferromagnetic metal break-junctions: a first-principles study. Phys Rev B. 2007;76(14):144430.CrossRef Burton JD, Sabirianov RF, Velev JP, Mryasov ON, Tsymbal EY. Effect of tip resonances on tunneling anisotropic magnetoresistance in ferromagnetic metal break-junctions: a first-principles study. Phys Rev B. 2007;76(14):144430.CrossRef
[78]
go back to reference Chappert C, Fert A, Van Dau FND. The emergence of spin electronics in data storage. Nat Mater. 2007;6(11):813.CrossRef Chappert C, Fert A, Van Dau FND. The emergence of spin electronics in data storage. Nat Mater. 2007;6(11):813.CrossRef
[79]
go back to reference Yang C-S, Zhang C, Redepenning J, Doudin B. In-situ magnetoresistance of Ni nanocontacts. Appl Phys Lett. 2004;84(15):2865.CrossRef Yang C-S, Zhang C, Redepenning J, Doudin B. In-situ magnetoresistance of Ni nanocontacts. Appl Phys Lett. 2004;84(15):2865.CrossRef
[80]
go back to reference Häfner M, Viljas JK, Cuevas JC. Theory of anisotropic magnetoresistance in atomic-sized ferromagnetic metal contacts. Phys Rev B. 2009;79(14):140410.CrossRef Häfner M, Viljas JK, Cuevas JC. Theory of anisotropic magnetoresistance in atomic-sized ferromagnetic metal contacts. Phys Rev B. 2009;79(14):140410.CrossRef
[81]
go back to reference Ben H, Andrew H. Contrasting spin-polarization regimes in Co nanowires studied by density functional theory. Phys Rev B. 2008;77(9):094442.CrossRef Ben H, Andrew H. Contrasting spin-polarization regimes in Co nanowires studied by density functional theory. Phys Rev B. 2008;77(9):094442.CrossRef
[82]
go back to reference Jacob D, Fernández-Rossier J, Palacios JJ. Anisotropic magnetoresistance in nanocontacts. Phys Rev B. 2008;77(16):165412.CrossRef Jacob D, Fernández-Rossier J, Palacios JJ. Anisotropic magnetoresistance in nanocontacts. Phys Rev B. 2008;77(16):165412.CrossRef
[83]
go back to reference Autès G, Barreteau C, Spanjaard D, Desjonquères M-C. Electronic transport in iron atomic contacts: from the infinite wire to realistic geometries. Phys Rev B. 2008;77(15):155437.CrossRef Autès G, Barreteau C, Spanjaard D, Desjonquères M-C. Electronic transport in iron atomic contacts: from the infinite wire to realistic geometries. Phys Rev B. 2008;77(15):155437.CrossRef
[84]
go back to reference Kato T, Ishikawa Y, Itoh H, Inoue J-i. Intrinsic anisotropic magnetoresistance in spin-polarized two-dimensional electron gas with rashba spin–orbit interaction. Phys Rev B. 2008;77(23):233404.CrossRef Kato T, Ishikawa Y, Itoh H, Inoue J-i. Intrinsic anisotropic magnetoresistance in spin-polarized two-dimensional electron gas with rashba spin–orbit interaction. Phys Rev B. 2008;77(23):233404.CrossRef
[85]
go back to reference Ou MN, Yang TJ, Harutyunyan SR, Chen YY, Chen CD, Lai SJ. Electrical and thermal transport in single nickel nanowire. Appl Phys Lett. 2008;92(6):063101.CrossRef Ou MN, Yang TJ, Harutyunyan SR, Chen YY, Chen CD, Lai SJ. Electrical and thermal transport in single nickel nanowire. Appl Phys Lett. 2008;92(6):063101.CrossRef
[86]
go back to reference Rocha AR, Archer T, Sanvito S. Search for magnetoresistance in excess of 1000% in Ni point contacts: density functional calculations. Phys Rev B. 2007;76(5):054435.CrossRef Rocha AR, Archer T, Sanvito S. Search for magnetoresistance in excess of 1000% in Ni point contacts: density functional calculations. Phys Rev B. 2007;76(5):054435.CrossRef
[87]
go back to reference Xu X, Irvine AC, Yang Y, Zhang X, Williams DA. Coulomb oscillations of indium-doped ZnO nanowire transistors in a magnetic field. Phys Rev B. 2010;82(19):195309.CrossRef Xu X, Irvine AC, Yang Y, Zhang X, Williams DA. Coulomb oscillations of indium-doped ZnO nanowire transistors in a magnetic field. Phys Rev B. 2010;82(19):195309.CrossRef
[88]
go back to reference Bernand-Mantel A, Seneor P, Bouzehouane K, Fusil S, Deranlot C, Petroff F, Fert A. Anisotropic magneto-coulomb effects and magnetic single-electron-transistor action in a single nanoparticle. Nat Phys. 2009;5(12):920.CrossRef Bernand-Mantel A, Seneor P, Bouzehouane K, Fusil S, Deranlot C, Petroff F, Fert A. Anisotropic magneto-coulomb effects and magnetic single-electron-transistor action in a single nanoparticle. Nat Phys. 2009;5(12):920.CrossRef
[89]
go back to reference Jalil MBA, Tan SG, Ma MJ. Enhanced magneto-coulomb effect in asymmetric ferromagnetic single electron transistors. J Appl Phys. 2009;105(7):07C905.CrossRef Jalil MBA, Tan SG, Ma MJ. Enhanced magneto-coulomb effect in asymmetric ferromagnetic single electron transistors. J Appl Phys. 2009;105(7):07C905.CrossRef
[90]
go back to reference Fernández-Rossier J, Aguado R, Brey L. Anisotropic magnetoresistance in single electron transport. Phys Status Solidi C. 2006;3(12):4231.CrossRef Fernández-Rossier J, Aguado R, Brey L. Anisotropic magnetoresistance in single electron transport. Phys Status Solidi C. 2006;3(12):4231.CrossRef
[91]
go back to reference Yu XZ, Li R-W, Asaka T, Ishizuka K, Kimoto K, Matsui Y. Relationship between magnetic domain configuration and crystallographic orientation in a colossal magnetoresistive material. J Electron Microsc. 2010;59(S1):S95.CrossRef Yu XZ, Li R-W, Asaka T, Ishizuka K, Kimoto K, Matsui Y. Relationship between magnetic domain configuration and crystallographic orientation in a colossal magnetoresistive material. J Electron Microsc. 2010;59(S1):S95.CrossRef
[92]
go back to reference Shick AB, Khmelevskyi S, Mryasov ON, Wunderlich J, Jungwirth T. Spin–orbit coupling induced anisotropy effects in bimetallic antiferromagnets: a route towards antiferromagnetic spintronics. Phys Rev B. 2010;81(21):212409.CrossRef Shick AB, Khmelevskyi S, Mryasov ON, Wunderlich J, Jungwirth T. Spin–orbit coupling induced anisotropy effects in bimetallic antiferromagnets: a route towards antiferromagnetic spintronics. Phys Rev B. 2010;81(21):212409.CrossRef
[93]
go back to reference Jungwirth T, Novák V, Martí X, Cukr M, Máca F, Shick AB, Mašek J, Horodyská P, Němec P, Holý V, Zemek J, Kužel P, Němec I, Gallagher BL, Campion RP, Foxon CT, Wunderlich J. Demonstration of molecular beam epitaxy and a semiconducting band structure for I–Mn-V compounds. Phys Rev B. 2011;83(3):035321.CrossRef Jungwirth T, Novák V, Martí X, Cukr M, Máca F, Shick AB, Mašek J, Horodyská P, Němec P, Holý V, Zemek J, Kužel P, Němec I, Gallagher BL, Campion RP, Foxon CT, Wunderlich J. Demonstration of molecular beam epitaxy and a semiconducting band structure for I–Mn-V compounds. Phys Rev B. 2011;83(3):035321.CrossRef
[94]
go back to reference Wang L, Wang SG, Rizwan S, Qin QH, Han XF. Magnetoresistance effect in antiferromagnet/nonmagnet/antiferromagnet multilayers. Appl Phys Lett. 2009;95(15):152512.CrossRef Wang L, Wang SG, Rizwan S, Qin QH, Han XF. Magnetoresistance effect in antiferromagnet/nonmagnet/antiferromagnet multilayers. Appl Phys Lett. 2009;95(15):152512.CrossRef
[95]
Metadata
Title
Research progress in anisotropic magnetoresistance
Authors
Chong-Jun Zhao
Lei Ding
Jia-Shun HuangFu
Jing-Yan Zhang
Guang-Hua Yu
Publication date
01-06-2013
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 3/2013
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-013-0090-5

Other articles of this Issue 3/2013

Rare Metals 3/2013 Go to the issue

Premium Partners