Skip to main content
Top
Published in: Physics of Metals and Metallography 13/2023

29-12-2023 | STRENGTH AND PLASTICITY

Research Progress on Prediction Models of Plastic Deformation and Ductile Fracture of Titanium Alloy

Authors: Rui Feng, Minghe Chen, Lansheng Xie, Youlin Bao, Yan Ge

Published in: Physics of Metals and Metallography | Issue 13/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

For further study the influence and role of yield criteria and ductile facture in the plastic deformation process of titanium alloy on subsequent forming processing and service. This review focuses on the damage mechanism and damage prediction model of titanium alloy, and discusses the influencing factors and prediction methods of damage evolution fracture model of alloy materials. Based on the unique mechanical behavior of titanium alloys derived from the HCP crystal structure, the yielding criteria developed for plastic forming of titanium alloys are summarised, with emphasis on the stress tensor invariant-based yielding criterion and the CPB06 yielding criterion, which satisfy both their anisotropy and tensile-compressive asymmetry. For the plastic forming process, the voids damage evolution mechanism is taken as the breakthrough point and a detailed classification of damage fracture prediction models for titanium alloys based on mechanical response. The uncoupled damage model, semi-coupled damage model and fully coupled damage model are discussed, and their application characteristics and advantages are analyzed, providing an effective means to achieve accurate prediction of shape size and tissue properties of titanium alloy components and optimisation of forming processes. Finally, the problems that still exist in the damage fracture model of titanium alloy plastic forming process are analyzed, and the future research direction of the plastic damage mechanics model and fracture prediction are prospected.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
3.
17.
go back to reference Z. Yue, X. Min, Z. Tuo, C. Soyarslan, X. Zhuang, H. Badreddine, K. Saanouni, and J. Gao, “Broad stress triaxiality ratio band fracture experiments in DP900 metal sheets and corresponding predictive capability of advanced phenomenological and micromechanical fully coupled damage models,” Mater. Sci. Eng., A 811, 140978 (2021). https://doi.org/10.1016/j.msea.2021.140978CrossRef Z. Yue, X. Min, Z. Tuo, C. Soyarslan, X. Zhuang, H. Badreddine, K. Saanouni, and J. Gao, “Broad stress triaxiality ratio band fracture experiments in DP900 metal sheets and corresponding predictive capability of advanced phenomenological and micromechanical fully coupled damage models,” Mater. Sci. Eng., A 811, 140978 (2021). https://​doi.​org/​10.​1016/​j.​msea.​2021.​140978CrossRef
22.
go back to reference M. Diehl, M. Groeber, C. Haase, D. A. Molodov, F. Roters, and D. Raabe, “Identifying structure–property relationships through DREAM.3D representative volume elements and damask crystal plasticity simulations: An integrated computational materials engineering approach,” JOM 69, 848–855 (2017). https://doi.org/10.1007/s11837-017-2303-0ADSCrossRef M. Diehl, M. Groeber, C. Haase, D. A. Molodov, F. Roters, and D. Raabe, “Identifying structure–property relationships through DREAM.3D representative volume elements and damask crystal plasticity simulations: An integrated computational materials engineering approach,” JOM 69, 848–855 (2017). https://​doi.​org/​10.​1007/​s11837-017-2303-0ADSCrossRef
43.
go back to reference M. Cockcroft and D. Latham, “Ductility and the workability of metals,” J. Inst. Met. 96, 33–39 (1968). M. Cockcroft and D. Latham, “Ductility and the workability of metals,” J. Inst. Met. 96, 33–39 (1968).
45.
go back to reference P. Brozzo, B. Deluca, and R. Rendina, “A new method for the prediction of formability in metal sheets,” in Sheet Material Forming and Formability (IDDRG, Amsterdam, 1972), pp. 112–115. P. Brozzo, B. Deluca, and R. Rendina, “A new method for the prediction of formability in metal sheets,” in Sheet Material Forming and Formability (IDDRG, Amsterdam, 1972), pp. 112–115.
48.
go back to reference A. M. Frudenthal, The Inelastic Behavior of Metals (Wiley, New York, 1950). A. M. Frudenthal, The Inelastic Behavior of Metals (Wiley, New York, 1950).
51.
52.
go back to reference N. K. Park, J. T. Yeom, and Y. S. Na, “Deformation behavior and microstructure evolutions in Ti–6Al–4V extrusion,” Mater. Sci. Forum 13, 1177–1181 (2003). https://doi.org/10.1089/10507250360731596 N. K. Park, J. T. Yeom, and Y. S. Na, “Deformation behavior and microstructure evolutions in Ti–6Al–4V extrusion,” Mater. Sci. Forum 13, 1177–1181 (2003). https://doi.org/10.1089/10507250360731596
72.
go back to reference L. M. Kachanov, “On creep rupture time,” Izv. Akad. Nauk SSSR, Otd. Tech. Nauk, No. 8, 26–31 (1958). L. M. Kachanov, “On creep rupture time,” Izv. Akad. Nauk SSSR, Otd. Tech. Nauk, No. 8, 26–31 (1958).
75.
go back to reference K. Saanouni, Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation (ISTE, 2013). K. Saanouni, Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation (ISTE, 2013).
78.
go back to reference G. V. Klevtsov, L. R. Botvina, N. A. Klevtsova, and L. V. Limarâ, Fractodiagnostics of the Destruction of Metallic Materials and Structures (Mosk. Inst. Stali i Splavov, Moscow, 2007). G. V. Klevtsov, L. R. Botvina, N. A. Klevtsova, and L. V. Limarâ, Fractodiagnostics of the Destruction of Metallic Materials and Structures (Mosk. Inst. Stali i Splavov, Moscow, 2007).
79.
Metadata
Title
Research Progress on Prediction Models of Plastic Deformation and Ductile Fracture of Titanium Alloy
Authors
Rui Feng
Minghe Chen
Lansheng Xie
Youlin Bao
Yan Ge
Publication date
29-12-2023
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 13/2023
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X2260110X

Other articles of this Issue 13/2023

Physics of Metals and Metallography 13/2023 Go to the issue