Skip to main content
Top
Published in: Quantum Information Processing 6/2020

01-06-2020

Resolution map in quantum computing: signal representation by periodic patterns

Author: Artyom M. Grigoryan

Published in: Quantum Information Processing | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a new concept of the resolution map is presented to extract periodic structures that compose the signal. The resolution map is described by using the frequency–time representation of the signal, which is known as the paired transform that provides the frequency-time representation of signals. The sequential calculation of resolution maps over the signal components of large sizes allows for calculating the small periodic structures, or patterns, which can be used for signal processing, for instance filtration, and from which the signal can be reconstructed. The length of the signal is considered to be a power of two, a case that fits well with qubit processing in quantum computing. The following new results are described: (1) the quantum scheme for the 1D discrete paired transform, (2) the quantum circuit for calculating the signal resolution map, (3) the quantum circuit for signal reconstruction from the resolution map, (4) different schemes for resolution maps for processing signals, and (5) the convolution of signals by their periodic patterns.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983)CrossRef Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983)CrossRef
2.
go back to reference Mallat, S.: Multiresolution approximation and wavelet orthogonal bases of L2(R). Trans. Am. Math. Soc. 315(1), 69–87 (1989)MATH Mallat, S.: Multiresolution approximation and wavelet orthogonal bases of L2(R). Trans. Am. Math. Soc. 315(1), 69–87 (1989)MATH
3.
go back to reference Myer, Y.: Wavelets and Operations. Advanced Mathematics. Cambridge Univ. Press, Cambridge (1992) Myer, Y.: Wavelets and Operations. Advanced Mathematics. Cambridge Univ. Press, Cambridge (1992)
4.
go back to reference Gabor, D.: Theory of communication. J. IEE 93, 429–457 (1946) Gabor, D.: Theory of communication. J. IEE 93, 429–457 (1946)
5.
go back to reference Mallat, S.G.: A theory for multiresolution signal decomposition—The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)ADSCrossRef Mallat, S.G.: A theory for multiresolution signal decomposition—The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)ADSCrossRef
6.
go back to reference Grigoryan, A.M., Grigoryan, M.M.: Brief Notes in Advanced DSP: Fourier analysis with MATLAB. CRC Press, Boca Raton (2009)MATH Grigoryan, A.M., Grigoryan, M.M.: Brief Notes in Advanced DSP: Fourier analysis with MATLAB. CRC Press, Boca Raton (2009)MATH
7.
go back to reference Grigoryan, A.M., Du, N.: 2-D images in frequency-time representation: direction images and resolution map. J. Electron. Imaging 19(3), 033012 (2010)ADSCrossRef Grigoryan, A.M., Du, N.: 2-D images in frequency-time representation: direction images and resolution map. J. Electron. Imaging 19(3), 033012 (2010)ADSCrossRef
8.
go back to reference Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quant. Inf. Process. 15(1), 1–35 (2015)ADSMathSciNetCrossRef Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quant. Inf. Process. 15(1), 1–35 (2015)ADSMathSciNetCrossRef
9.
go back to reference Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quant. Inf. Process. 12(8), 2833–2860 (2013)ADSMathSciNetCrossRef Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quant. Inf. Process. 12(8), 2833–2860 (2013)ADSMathSciNetCrossRef
10.
go back to reference Grigoryan, A.M.: New algorithms for calculating discrete Fourier transforms. USSR Comput. Math. Math. Phys. 26(5), 84–88 (1986)CrossRef Grigoryan, A.M.: New algorithms for calculating discrete Fourier transforms. USSR Comput. Math. Math. Phys. 26(5), 84–88 (1986)CrossRef
11.
go back to reference Grigoryan, A.M.: An algorithm of computation of the one-dimensional discrete Fourier transform. Izvestiya VUZov SSSR, Radioelectronica 31(5), 47–52 (1988) Grigoryan, A.M.: An algorithm of computation of the one-dimensional discrete Fourier transform. Izvestiya VUZov SSSR, Radioelectronica 31(5), 47–52 (1988)
12.
go back to reference Grigoryan, A.M., Agaian, S.S.: Paired quantum Fourier transform with log2N Hadamard gates. Quant. Inf. Process. 18, 217 (2019)ADSCrossRef Grigoryan, A.M., Agaian, S.S.: Paired quantum Fourier transform with log2N Hadamard gates. Quant. Inf. Process. 18, 217 (2019)ADSCrossRef
13.
go back to reference Li, H.S., Fan, P., Xia, H., Song, S., He, X.: The quantum Fourier transform based on quantum vision representation. Quant. Inf. Process. 17, 333 (2018)ADSMathSciNetCrossRef Li, H.S., Fan, P., Xia, H., Song, S., He, X.: The quantum Fourier transform based on quantum vision representation. Quant. Inf. Process. 17, 333 (2018)ADSMathSciNetCrossRef
14.
15.
go back to reference Karafyllidis, I.G.: Visualization of the quantum Fourier transform using a quantum computer simulator. Quant. Inf. Process. 2(4), 271–288 (2003)MathSciNetCrossRef Karafyllidis, I.G.: Visualization of the quantum Fourier transform using a quantum computer simulator. Quant. Inf. Process. 2(4), 271–288 (2003)MathSciNetCrossRef
16.
go back to reference Grigoryan, A.M.: 2-D and 1-D multi-paired transforms: frequency-time type wavelets. IEEE Trans. Signal Process. 49(2), 344–353 (2001)ADSMathSciNetCrossRef Grigoryan, A.M.: 2-D and 1-D multi-paired transforms: frequency-time type wavelets. IEEE Trans. Signal Process. 49(2), 344–353 (2001)ADSMathSciNetCrossRef
17.
go back to reference Grigoryan, A.M.: Fourier transform representation by frequency-time wavelets. IEEE Trans. Signal Process. 53(7), 2489–2497 (2005)ADSMathSciNetCrossRef Grigoryan, A.M.: Fourier transform representation by frequency-time wavelets. IEEE Trans. Signal Process. 53(7), 2489–2497 (2005)ADSMathSciNetCrossRef
18.
go back to reference Grigoryan, A.M.: Representation of the Fourier transform by Fourier series. J. Math. Imaging Vis. 25(1), 87–105 (2006)MathSciNetCrossRef Grigoryan, A.M.: Representation of the Fourier transform by Fourier series. J. Math. Imaging Vis. 25(1), 87–105 (2006)MathSciNetCrossRef
19.
go back to reference Grigoryan, A.M., Agaian, S.S.: Split manageable efficient algorithm for Fourier and Hadamard transforms. IEEE Trans. Signal Process. 48(1), 172–183 (2000)ADSMathSciNetCrossRef Grigoryan, A.M., Agaian, S.S.: Split manageable efficient algorithm for Fourier and Hadamard transforms. IEEE Trans. Signal Process. 48(1), 172–183 (2000)ADSMathSciNetCrossRef
20.
go back to reference Grigoryan, A.M., Agaian, S.S.: Multidimensional discrete unitary transforms: representation, partitioning, and algorithms. Marcel Dekker, New York (2003)CrossRef Grigoryan, A.M., Agaian, S.S.: Multidimensional discrete unitary transforms: representation, partitioning, and algorithms. Marcel Dekker, New York (2003)CrossRef
Metadata
Title
Resolution map in quantum computing: signal representation by periodic patterns
Author
Artyom M. Grigoryan
Publication date
01-06-2020
Publisher
Springer US
Published in
Quantum Information Processing / Issue 6/2020
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-020-02685-7

Other articles of this Issue 6/2020

Quantum Information Processing 6/2020 Go to the issue