Skip to main content
Top
Published in: Wireless Personal Communications 3/2020

31-01-2020

Resource Allocation Strategy of SWIPT Relay Under General Interference

Authors: Jianxiong Li, Ke Zhao, Xuelong Ding, Weiguang Shi

Published in: Wireless Personal Communications | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The interference often results in a low rate of the wireless relay systems. The recent research on radio frequency signal energy harvesting makes it possible to utilize the interference energy. Based on the widely applicable time switching relay operation strategy and decode-and-forward (DF) relay modes, this paper studies the resource allocation strategy of the simultaneous wireless information and power transfer relay system under the general interference. The h2 method is proposed for resource allocation. It establishes a resource allocation coordinate system, and divides the energy harvesting area and the DF area by using the h2 method. Through derivation, the relationship between the non-interruption probability of the system and the line h2 is found. Aiming at maximizing the non-interruption probability, the golden splitting method is used to solve the optimal value. The numerical simulation results demonstrate that the h2 method can effectively improve the non-interruption probability of the system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Ikki, S. S., & Aissa, S. (2012). Impact of imperfect channel estimation and co-channel interference on dual-hop relaying systems. IEEE Communications Letters,16(3), 324–327.CrossRef Ikki, S. S., & Aissa, S. (2012). Impact of imperfect channel estimation and co-channel interference on dual-hop relaying systems. IEEE Communications Letters,16(3), 324–327.CrossRef
2.
go back to reference Lee, N., Jr., & Heath, R. W. (2014). Advanced interference management technique: Potentials and limitations. IEEE Wireless Communications,23(3), 30–38.CrossRef Lee, N., Jr., & Heath, R. W. (2014). Advanced interference management technique: Potentials and limitations. IEEE Wireless Communications,23(3), 30–38.CrossRef
3.
go back to reference Zahir, T., Arshad, K., Nakata, A., & Moessner, K. (2013). Interference management in femtocells. IEEE Communications Surveys & Tutorials,15(1), 293–311.CrossRef Zahir, T., Arshad, K., Nakata, A., & Moessner, K. (2013). Interference management in femtocells. IEEE Communications Surveys & Tutorials,15(1), 293–311.CrossRef
4.
go back to reference Kakar, J., & Sezgin, A. (2017). A survey on robust interference management in wireless networks. Entropy,19(7), 362.CrossRef Kakar, J., & Sezgin, A. (2017). A survey on robust interference management in wireless networks. Entropy,19(7), 362.CrossRef
5.
go back to reference Zhang, J., & Letaief, K. B. (2012). Interference management with relay cooperation in two-hop interference channels. IEEE Wireless Communications Letters,1(3), 165–168.CrossRef Zhang, J., & Letaief, K. B. (2012). Interference management with relay cooperation in two-hop interference channels. IEEE Wireless Communications Letters,1(3), 165–168.CrossRef
6.
go back to reference Cadambe, V. R., & Jafar, S. A. (2008). Interference alignment and degrees of freedom of the K-user interference channel. IEEE Transactions on Information Theory,54(8), 3425–3441.MathSciNetCrossRef Cadambe, V. R., & Jafar, S. A. (2008). Interference alignment and degrees of freedom of the K-user interference channel. IEEE Transactions on Information Theory,54(8), 3425–3441.MathSciNetCrossRef
7.
go back to reference Zhao, N., Yu, F. R., & Leung, V. C. M. (2015). Wireless energy harvesting in interference alignment networks. IEEE Communications Magazine,53(6), 72–78.CrossRef Zhao, N., Yu, F. R., & Leung, V. C. M. (2015). Wireless energy harvesting in interference alignment networks. IEEE Communications Magazine,53(6), 72–78.CrossRef
8.
go back to reference Zhao, N., Yu, F. R., Jin, M., Yan, Q., & Leung, V. C. M. (2017). Interference alignment and its applications: A survey, research issues, and challenges. IEEE Communications Surveys & Tutorials,18(3), 1779–1803.CrossRef Zhao, N., Yu, F. R., Jin, M., Yan, Q., & Leung, V. C. M. (2017). Interference alignment and its applications: A survey, research issues, and challenges. IEEE Communications Surveys & Tutorials,18(3), 1779–1803.CrossRef
9.
go back to reference Mekid, S., Qureshi, A., & Baroudi, U. (2017). Energy harvesting from ambient radio frequency: Is it worth it? Arabian Journal for Science & Engineering,42(7), 2673–2683.CrossRef Mekid, S., Qureshi, A., & Baroudi, U. (2017). Energy harvesting from ambient radio frequency: Is it worth it? Arabian Journal for Science & Engineering,42(7), 2673–2683.CrossRef
10.
go back to reference Kamalinejad, P., Mahapatra, C., Sheng, Z., Mirabbasi, S., Leung, V. C. M., & Guan, Y. L. (2015). Wireless energy harvesting for the internet of things. IEEE Communications Magazine,53(6), 102–108.CrossRef Kamalinejad, P., Mahapatra, C., Sheng, Z., Mirabbasi, S., Leung, V. C. M., & Guan, Y. L. (2015). Wireless energy harvesting for the internet of things. IEEE Communications Magazine,53(6), 102–108.CrossRef
11.
go back to reference Masouros, C., Ratnarajah, T., Sellathurai, M., & Papadias, C. B. (2013). Known interference in the cellular downlink: A performance limiting factor or a source of green signal power? IEEE Communications Magazine,51(10), 162–171.CrossRef Masouros, C., Ratnarajah, T., Sellathurai, M., & Papadias, C. B. (2013). Known interference in the cellular downlink: A performance limiting factor or a source of green signal power? IEEE Communications Magazine,51(10), 162–171.CrossRef
12.
go back to reference Masouros, C., & Zheng, G. (2015). Exploiting known interference as green signal power for downlink beamforming optimization. IEEE Transactions on Signal Processing,63(14), 3628–3640.MathSciNetCrossRef Masouros, C., & Zheng, G. (2015). Exploiting known interference as green signal power for downlink beamforming optimization. IEEE Transactions on Signal Processing,63(14), 3628–3640.MathSciNetCrossRef
13.
go back to reference Zhao, N., Zhang, S., Yu, R., Chen, Y., Nallanathan, A., & Leung, V. (2017). Exploiting interference for energy harvesting: A survey, research issues and challenges. IEEE Access,5, 10403–10421.CrossRef Zhao, N., Zhang, S., Yu, R., Chen, Y., Nallanathan, A., & Leung, V. (2017). Exploiting interference for energy harvesting: A survey, research issues and challenges. IEEE Access,5, 10403–10421.CrossRef
14.
go back to reference Zhang, R., & Ho, C. K. (2013). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications,12(5), 1989–2001.CrossRef Zhang, R., & Ho, C. K. (2013). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications,12(5), 1989–2001.CrossRef
15.
go back to reference Varshney, L. R. (2008). Transporting information and energy simultaneously. In IEEE international symposium on information theory (pp. 1612–1616). IEEE. Varshney, L. R. (2008). Transporting information and energy simultaneously. In IEEE international symposium on information theory (pp. 1612–1616). IEEE.
16.
go back to reference Xun, Z., Rui, Z., & Ho, C. K. (2012). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Communications,61(11), 4754–4767. Xun, Z., Rui, Z., & Ho, C. K. (2012). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Communications,61(11), 4754–4767.
17.
go back to reference Ding, H., Wang, X., Costa, D. B. D., Chen, Y., & Gong, F. (2017). Adaptive time-switching based energy harvesting relaying protocols. IEEE Transactions on Communications,65(7), 2821–2837.CrossRef Ding, H., Wang, X., Costa, D. B. D., Chen, Y., & Gong, F. (2017). Adaptive time-switching based energy harvesting relaying protocols. IEEE Transactions on Communications,65(7), 2821–2837.CrossRef
18.
go back to reference Huang, G., Zhang, Q., & Qin, J. (2015). Joint time switching and power allocation for multicarrier decode-and-forward relay networks with SWIPT. IEEE Signal Processing Letters,22(12), 2284–2288.CrossRef Huang, G., Zhang, Q., & Qin, J. (2015). Joint time switching and power allocation for multicarrier decode-and-forward relay networks with SWIPT. IEEE Signal Processing Letters,22(12), 2284–2288.CrossRef
19.
go back to reference Ghazanfari, A., Tabassum, H., & Hossain, E. (2015). Ambient RF energy harvesting in ultra-dense small cell networks: Performance and trade-offs. IEEE Wireless Communications,23(2), 38–45.CrossRef Ghazanfari, A., Tabassum, H., & Hossain, E. (2015). Ambient RF energy harvesting in ultra-dense small cell networks: Performance and trade-offs. IEEE Wireless Communications,23(2), 38–45.CrossRef
20.
go back to reference Andrews, J. G., Buzzi, S., Wan, C., Hanly, S. V., Lozano, A., Soong, A. C. K., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications,32(6), 1065–1082.CrossRef Andrews, J. G., Buzzi, S., Wan, C., Hanly, S. V., Lozano, A., Soong, A. C. K., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications,32(6), 1065–1082.CrossRef
21.
go back to reference Eldowek, B. M., El-Atty, S. M. A., El-Rabaie, E. S. M., & El-Samie, F. E. A. (2018). Second-order statistics channel model for 5G millimeter-wave mobile communications. Arabian Journal for Science and Engineering,43(6), 2833–2842.CrossRef Eldowek, B. M., El-Atty, S. M. A., El-Rabaie, E. S. M., & El-Samie, F. E. A. (2018). Second-order statistics channel model for 5G millimeter-wave mobile communications. Arabian Journal for Science and Engineering,43(6), 2833–2842.CrossRef
22.
go back to reference Diamantoulakis, P. D., Pappi, K. N., Karagiannidis, G. K., Hong, X., & Nallanathan, A. (2017). Joint downlink/uplink design for wireless powered networks with interference. IEEE Access,5(99), 1534–1547.CrossRef Diamantoulakis, P. D., Pappi, K. N., Karagiannidis, G. K., Hong, X., & Nallanathan, A. (2017). Joint downlink/uplink design for wireless powered networks with interference. IEEE Access,5(99), 1534–1547.CrossRef
23.
go back to reference Liu, L., Zhang, R., & Chua, K. C. (2013). Wireless information transfer with opportunistic energy harvesting. IEEE Transactions on Wireless Communications,12(1), 288–300.CrossRef Liu, L., Zhang, R., & Chua, K. C. (2013). Wireless information transfer with opportunistic energy harvesting. IEEE Transactions on Wireless Communications,12(1), 288–300.CrossRef
24.
go back to reference Ozarow, L. H., Shamai, S., & Wyner, A. D. (1994). Information theoretic considerations for cellular mobile radio. IEEE Transactions on Vehicular Technology,43(2), 359–378.CrossRef Ozarow, L. H., Shamai, S., & Wyner, A. D. (1994). Information theoretic considerations for cellular mobile radio. IEEE Transactions on Vehicular Technology,43(2), 359–378.CrossRef
25.
go back to reference Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications,12(7), 3622–3636.CrossRef Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications,12(7), 3622–3636.CrossRef
Metadata
Title
Resource Allocation Strategy of SWIPT Relay Under General Interference
Authors
Jianxiong Li
Ke Zhao
Xuelong Ding
Weiguang Shi
Publication date
31-01-2020
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 3/2020
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07124-5

Other articles of this Issue 3/2020

Wireless Personal Communications 3/2020 Go to the issue