Skip to main content
Top

2017 | OriginalPaper | Chapter

5. Responsive Photonic Crystals with Tunable Structural Color

Authors : Xiaolu Jia, Haiying Tan, Jintao Zhu

Published in: Polymer-Engineered Nanostructures for Advanced Energy Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Since colorimetric sensors can respond to environmental stimulus by the color change, they are widely concerned because of their low cost and low power consumed. A new material in colorimetric sensors called photonic crystals (PCs) was fabricated for sensing the external stimulus. PCs are composed of periodic ordered dielectrics nanostructures with photonic band gap. Different from dye, PCs can exhibit vivid structural color, which can be tailored by lattice spacing variation under the external stimulus. The PCs materials have important applications in the fields of display, sensors, anti-counterfeiting, and others. In this chapter, we will discuss strategies and mechanism for the fabrication of responsive PCs. Moreover, PCs materials demonstrate response characteristic under external stimuli, such as mechanical force, temperature, pH, ionic species, solvents, biomolecules, light, electrical or magnetic fields, and others. Challenge and perspective of this emerging area will also be discussed at the end of this chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Whitney HM, Kolle M, Andrew P (2009) Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators. Science 323:130–133CrossRef Whitney HM, Kolle M, Andrew P (2009) Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators. Science 323:130–133CrossRef
2.
go back to reference Noyes JA, Vukusic P, Hooper IR (2007) Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle. Opt Express 15:4351–4358CrossRef Noyes JA, Vukusic P, Hooper IR (2007) Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle. Opt Express 15:4351–4358CrossRef
3.
go back to reference Kinoshita S, Yoshioka S, Fujii Y et al (2002) Photophysics of structural color in the morpho butterflies. Forma 17:103–121 Kinoshita S, Yoshioka S, Fujii Y et al (2002) Photophysics of structural color in the morpho butterflies. Forma 17:103–121
4.
go back to reference Gao XF, Yan X, Yao X et al (2007) The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Adv Mater 19:2213–2217CrossRef Gao XF, Yan X, Yao X et al (2007) The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Adv Mater 19:2213–2217CrossRef
5.
go back to reference Parker AR, McPhedran RC, McKenzie DR et al (2001) Photonic engineering. aphrodite’s iridescence. Nature 409:36–37CrossRef Parker AR, McPhedran RC, McKenzie DR et al (2001) Photonic engineering. aphrodite’s iridescence. Nature 409:36–37CrossRef
6.
go back to reference Parker AR, Welch VL, Driver D et al (2003) Structural colour: opal analogue discovered in a weevil. Nature 426:786–787CrossRef Parker AR, Welch VL, Driver D et al (2003) Structural colour: opal analogue discovered in a weevil. Nature 426:786–787CrossRef
7.
go back to reference Zhao YJ, Xie ZY, Gu HC et al (2012) Bio-inspired variable structural color materials. Chem Soc Rev 41:3297–3317CrossRef Zhao YJ, Xie ZY, Gu HC et al (2012) Bio-inspired variable structural color materials. Chem Soc Rev 41:3297–3317CrossRef
8.
go back to reference John S (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58:2486–2489CrossRef John S (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58:2486–2489CrossRef
9.
go back to reference Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58:2059–2062CrossRef Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58:2059–2062CrossRef
10.
go back to reference Huang Y, Zhou JM, Su B et al (2012) Colloidal photonic crystals with narrow stopbands assembled from low-adhesive superhydrophobic substrates. J Am Chem Soc 134:17053–17058CrossRef Huang Y, Zhou JM, Su B et al (2012) Colloidal photonic crystals with narrow stopbands assembled from low-adhesive superhydrophobic substrates. J Am Chem Soc 134:17053–17058CrossRef
11.
go back to reference Fenzl C, Hirsch T, Wolfbeis OS (2014) Photonic crystals for chemical sensing and biosensing. Angew Chem Int Ed 53:3318–3335CrossRef Fenzl C, Hirsch T, Wolfbeis OS (2014) Photonic crystals for chemical sensing and biosensing. Angew Chem Int Ed 53:3318–3335CrossRef
12.
go back to reference Ge JP, Yin YD (2011) Responsive photonic crystals. Angew Chem In Ed 50:1492–1522CrossRef Ge JP, Yin YD (2011) Responsive photonic crystals. Angew Chem In Ed 50:1492–1522CrossRef
13.
go back to reference Aguirre CI, Reguera E, Stein A (2010) Tunable colors in opals and inverse opal photonic crystals. Adv Funct Mater 20:2565–2578CrossRef Aguirre CI, Reguera E, Stein A (2010) Tunable colors in opals and inverse opal photonic crystals. Adv Funct Mater 20:2565–2578CrossRef
14.
go back to reference Yablonovitch E, Gmitter TJ, Leung KM (1991) Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys Rev Lett 67:2295–2298CrossRef Yablonovitch E, Gmitter TJ, Leung KM (1991) Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys Rev Lett 67:2295–2298CrossRef
15.
go back to reference Tondiglia VP, Natarajan LV, Sutherland RL et al (2002) Holographic formation of electro-optical polymer–liquid crystal photonic crystals. Adv Mater 14:187–191CrossRef Tondiglia VP, Natarajan LV, Sutherland RL et al (2002) Holographic formation of electro-optical polymer–liquid crystal photonic crystals. Adv Mater 14:187–191CrossRef
16.
go back to reference Mizeikisa V, Juodkazisa S, Marcinkevi A et al (2001) Tailoring and characterization of photonic crystals. J Photoch Photobio C 2:35–69CrossRef Mizeikisa V, Juodkazisa S, Marcinkevi A et al (2001) Tailoring and characterization of photonic crystals. J Photoch Photobio C 2:35–69CrossRef
17.
go back to reference Liu Y, Liu S, Zhang XS (2006) Fabrication of three-dimensional photonic crystals with two-beam holographic lithography. Appl Optics 45:480–483CrossRef Liu Y, Liu S, Zhang XS (2006) Fabrication of three-dimensional photonic crystals with two-beam holographic lithography. Appl Optics 45:480–483CrossRef
18.
go back to reference Lehmann V, Föll H (1990) Formation mechanism and properties of electrochemically etched trenches in n-type silicon. J Electrochem Soc 137:653–659CrossRef Lehmann V, Föll H (1990) Formation mechanism and properties of electrochemically etched trenches in n-type silicon. J Electrochem Soc 137:653–659CrossRef
19.
go back to reference Choi SY, Mamak M, Freymann GV et al (2006) Mesoporous bragg stack color tunable sensors. Nano Lett 6:2456–2461CrossRef Choi SY, Mamak M, Freymann GV et al (2006) Mesoporous bragg stack color tunable sensors. Nano Lett 6:2456–2461CrossRef
20.
go back to reference Lotsch BV, Knobbe CB, Ozin GA (2009) A Step Towards optically encoded silver release in 1D photonic crystals. Small 5:1498–1503CrossRef Lotsch BV, Knobbe CB, Ozin GA (2009) A Step Towards optically encoded silver release in 1D photonic crystals. Small 5:1498–1503CrossRef
21.
go back to reference Wang ZY, Zhang JH, Wang ZH et al (2013) Biochemical-to-optical signal transduction by pH sensitive organic–inorganic hybrid Bragg stacks with a full color display. J Mater Chem C 1:977–983CrossRef Wang ZY, Zhang JH, Wang ZH et al (2013) Biochemical-to-optical signal transduction by pH sensitive organic–inorganic hybrid Bragg stacks with a full color display. J Mater Chem C 1:977–983CrossRef
22.
go back to reference Fan Y, Walish JJ, Tang SC et al (2014) Defects, solvent quality, and photonic response in lamellar block copolymer gels. Macromolecules 47:1130–1136CrossRef Fan Y, Walish JJ, Tang SC et al (2014) Defects, solvent quality, and photonic response in lamellar block copolymer gels. Macromolecules 47:1130–1136CrossRef
23.
go back to reference Lee W, Yoon J, Thomas EL et al (2013) Dynamic changes in structural color of a lamellar block copolymer photonic gel during solvent evaporation. Macromolecules 46:6528–6532CrossRef Lee W, Yoon J, Thomas EL et al (2013) Dynamic changes in structural color of a lamellar block copolymer photonic gel during solvent evaporation. Macromolecules 46:6528–6532CrossRef
24.
go back to reference Kang Y, Walish JJ, Gorishnyy T et al (2007) Broad-wavelength-range chemically tunable block-copolymer photonic gels. Nat Mater 6:957–960CrossRef Kang Y, Walish JJ, Gorishnyy T et al (2007) Broad-wavelength-range chemically tunable block-copolymer photonic gels. Nat Mater 6:957–960CrossRef
25.
go back to reference Ge JP, Hu YX, Yin YD (2007) Highly tunable superparamagnetic colloidal photonic crystals. Angew Chem Int Ed 46:7428–7431CrossRef Ge JP, Hu YX, Yin YD (2007) Highly tunable superparamagnetic colloidal photonic crystals. Angew Chem Int Ed 46:7428–7431CrossRef
26.
go back to reference Lee H, Kim J, Kim H et al (2010) Colour-barcoded magnetic microparticles for multiplexed bioassays. Nat Mater 5:745–749CrossRef Lee H, Kim J, Kim H et al (2010) Colour-barcoded magnetic microparticles for multiplexed bioassays. Nat Mater 5:745–749CrossRef
27.
go back to reference Zhang JT, Smith N, Asher SA (2012) Two-dimensional photonic crystal surfactant detection. Anal Chem 84:6416–6420CrossRef Zhang JT, Smith N, Asher SA (2012) Two-dimensional photonic crystal surfactant detection. Anal Chem 84:6416–6420CrossRef
28.
go back to reference Zhang JT, Wang LL, Chao X et al (2013) Vertical spreading of two-dimensional crystalline colloidal arrays. J Mater Chem C 1:6099–6102CrossRef Zhang JT, Wang LL, Chao X et al (2013) Vertical spreading of two-dimensional crystalline colloidal arrays. J Mater Chem C 1:6099–6102CrossRef
29.
go back to reference Zhang JT, Wang LL, Luo J et al (2011) 2-D array photonic crystal sensing motif. J Am Chem Soc 133:9152–9155CrossRef Zhang JT, Wang LL, Luo J et al (2011) 2-D array photonic crystal sensing motif. J Am Chem Soc 133:9152–9155CrossRef
30.
go back to reference Asher SA, Peteu SF, Reese CE et al (2002) Polymerized crystalline colloidal array chemical-sensing materials for detection of lead in body fluids. Anal Bioanal Chem 373:632–638CrossRef Asher SA, Peteu SF, Reese CE et al (2002) Polymerized crystalline colloidal array chemical-sensing materials for detection of lead in body fluids. Anal Bioanal Chem 373:632–638CrossRef
31.
go back to reference Kanai T, Lee D, Shum HC et al (2010) Fabrication of tunable spherical colloidal crystals immobilized in soft hydrogels. Small 6:807–810CrossRef Kanai T, Lee D, Shum HC et al (2010) Fabrication of tunable spherical colloidal crystals immobilized in soft hydrogels. Small 6:807–810CrossRef
32.
go back to reference Kamenjicki M, Asher SA (2005) Epoxide functionalized polymerized crystalline colloidal arrays. Sens Actuators, B Chem 106:373–377CrossRef Kamenjicki M, Asher SA (2005) Epoxide functionalized polymerized crystalline colloidal arrays. Sens Actuators, B Chem 106:373–377CrossRef
33.
go back to reference Ye BF, Rong F, Gu HC et al (2013) Bioinspired angle-independent photonic crystal colorimetric sensing. Chem Commun 49:5331–5333CrossRef Ye BF, Rong F, Gu HC et al (2013) Bioinspired angle-independent photonic crystal colorimetric sensing. Chem Commun 49:5331–5333CrossRef
34.
go back to reference Zhao YJ, Zhao XW, Hu J et al (2009) Encoded porous beads for label-free multiplex detection of tumor markers. Adv Mater 21:569–572CrossRef Zhao YJ, Zhao XW, Hu J et al (2009) Encoded porous beads for label-free multiplex detection of tumor markers. Adv Mater 21:569–572CrossRef
35.
go back to reference Asher SA, Holtz J, Liu L et al (1994) Self-assembly motif for creating submicron periodic materials. Polymerized crystalline colloidal arrays. J Am Chem Soc 116:4997–4998CrossRef Asher SA, Holtz J, Liu L et al (1994) Self-assembly motif for creating submicron periodic materials. Polymerized crystalline colloidal arrays. J Am Chem Soc 116:4997–4998CrossRef
36.
go back to reference Arsenault A, Clark TJ, Wang RZ et al (2006) From colour fingerprinting to the control of photoluminescence in elastic photonic crystals. Nat Mater 5:179–184CrossRef Arsenault A, Clark TJ, Wang RZ et al (2006) From colour fingerprinting to the control of photoluminescence in elastic photonic crystals. Nat Mater 5:179–184CrossRef
37.
go back to reference Jia XL, Wang JY, Wang K et al (2015) Highly sensitive mechanochromic photonic hydrogels with fast reversibility and mechanical stability. Langmuir 31:8732–8737CrossRef Jia XL, Wang JY, Wang K et al (2015) Highly sensitive mechanochromic photonic hydrogels with fast reversibility and mechanical stability. Langmuir 31:8732–8737CrossRef
38.
go back to reference Foulger SH, Jiang P, Ying Y et al (2001) Photonic bandgap composites. Adv Mater 13:1898–1901CrossRef Foulger SH, Jiang P, Ying Y et al (2001) Photonic bandgap composites. Adv Mater 13:1898–1901CrossRef
39.
go back to reference Fudouzi H, Sawada T (2006) Photonic rubber sheets with tunable color by elastic deformation. Langmuir 22:1365–1368CrossRef Fudouzi H, Sawada T (2006) Photonic rubber sheets with tunable color by elastic deformation. Langmuir 22:1365–1368CrossRef
40.
go back to reference Yang DP, Ye SY, Ge JP (2014) From metastable colloidal crystalline arrays to fast responsive mechanochromic photonic gels: an organic gel for deformation-based display panels. Adv Funct Mater 24:3197–3205CrossRef Yang DP, Ye SY, Ge JP (2014) From metastable colloidal crystalline arrays to fast responsive mechanochromic photonic gels: an organic gel for deformation-based display panels. Adv Funct Mater 24:3197–3205CrossRef
41.
go back to reference Wang XQ, Wang CF, Zhou ZF et al (2014) Robust mechanochromic elastic one-dimensional photonic hydrogels for touch sensing and flexible displays. Adv Optical Mater 2:652–662CrossRef Wang XQ, Wang CF, Zhou ZF et al (2014) Robust mechanochromic elastic one-dimensional photonic hydrogels for touch sensing and flexible displays. Adv Optical Mater 2:652–662CrossRef
42.
go back to reference Yue Y, Kurokawa T, Nonoyama T et al (2014) Mechano-actuated ultrafast full-colour switching in layered photonic hydrogels. Nat Commun 5:4659CrossRef Yue Y, Kurokawa T, Nonoyama T et al (2014) Mechano-actuated ultrafast full-colour switching in layered photonic hydrogels. Nat Commun 5:4659CrossRef
43.
go back to reference Haque MA, Kurokawa T, Kamita G et al (2011) Rapid and reversible tuning of structural color of a hydrogel over the entire visible spectrum by mechanical stimulation. Chem Mater 23:5200–5207CrossRef Haque MA, Kurokawa T, Kamita G et al (2011) Rapid and reversible tuning of structural color of a hydrogel over the entire visible spectrum by mechanical stimulation. Chem Mater 23:5200–5207CrossRef
44.
go back to reference Chan EP, Walish JJ, Thomas EL et al (2011) Block copolymer photonic gel for mechanochromic sensing. Adv Mater 23:4702–4706CrossRef Chan EP, Walish JJ, Thomas EL et al (2011) Block copolymer photonic gel for mechanochromic sensing. Adv Mater 23:4702–4706CrossRef
45.
go back to reference Weissman JM, Sunkara HB, Tse AS et al (1996) Thermally switchable periodicities and diffraction from mesoscopically ordered materials. Science 274:959–960CrossRef Weissman JM, Sunkara HB, Tse AS et al (1996) Thermally switchable periodicities and diffraction from mesoscopically ordered materials. Science 274:959–960CrossRef
46.
go back to reference Matsubara K, Watanabe M, Takeoka Y (2007) A thermally adjustable multicolor photochromic hydrogel. Angew Chem Int Ed 46:1688–1692CrossRef Matsubara K, Watanabe M, Takeoka Y (2007) A thermally adjustable multicolor photochromic hydrogel. Angew Chem Int Ed 46:1688–1692CrossRef
47.
go back to reference Kumoda M, Watanabe M, Takeoka Y (2006) Preparations and optical properties of ordered arrays of submicron gel particles: interconnected state and trapped state. Langmuir 22:4403–4407CrossRef Kumoda M, Watanabe M, Takeoka Y (2006) Preparations and optical properties of ordered arrays of submicron gel particles: interconnected state and trapped state. Langmuir 22:4403–4407CrossRef
48.
go back to reference Chiappelli MC, Hayward RC (2012) Photonic multilayer sensors from photo-crosslinkable polymer films. Adv Mater 24:6100–6104CrossRef Chiappelli MC, Hayward RC (2012) Photonic multilayer sensors from photo-crosslinkable polymer films. Adv Mater 24:6100–6104CrossRef
49.
go back to reference Takeoka Y, Watanabe M (2003) An electro and thermochromic hydrogel as a full-color indicator Langmuir 19:9104–9106 Takeoka Y, Watanabe M (2003) An electro and thermochromic hydrogel as a full-color indicator Langmuir 19:9104–9106
50.
go back to reference Ma HR, Zhu MX, Luo W et al (2015) Free-standing, flexible thermochromic films based on one-dimensional magnetic photonic crystals. J Mater Chem C 3:2848–2855CrossRef Ma HR, Zhu MX, Luo W et al (2015) Free-standing, flexible thermochromic films based on one-dimensional magnetic photonic crystals. J Mater Chem C 3:2848–2855CrossRef
51.
go back to reference Tsuji S, Kawaguchi H (2005) Colored thin films prepared from hydrogel microspheres. Langmuir 21:8439–8442CrossRef Tsuji S, Kawaguchi H (2005) Colored thin films prepared from hydrogel microspheres. Langmuir 21:8439–8442CrossRef
52.
go back to reference Zhang YQ, Qiu JH, Hu RR et al (2015) A visual and organic vapor sensitive photonic crystal sensor consisting of polymer-infiltrated SiO2 inverse opal. Phys Chem Chem Phys 17:9651–9658CrossRef Zhang YQ, Qiu JH, Hu RR et al (2015) A visual and organic vapor sensitive photonic crystal sensor consisting of polymer-infiltrated SiO2 inverse opal. Phys Chem Chem Phys 17:9651–9658CrossRef
53.
go back to reference Takeoka Y, Watanabe M (2003) Controlled multistructural color of a gel membrane. Langmuir 19:9554–9557CrossRef Takeoka Y, Watanabe M (2003) Controlled multistructural color of a gel membrane. Langmuir 19:9554–9557CrossRef
54.
go back to reference Pan Z, Ma JK, Yan J et al (2012) Response of inverse-opal hydrogels to alcohols. J Mater Chem 22:2018–2025CrossRef Pan Z, Ma JK, Yan J et al (2012) Response of inverse-opal hydrogels to alcohols. J Mater Chem 22:2018–2025CrossRef
55.
go back to reference Fudouzi H, Xia YN (2003) Photonic papers and inks: color writing with colorless materials. Adv Mater 15:892–896CrossRef Fudouzi H, Xia YN (2003) Photonic papers and inks: color writing with colorless materials. Adv Mater 15:892–896CrossRef
56.
go back to reference Lee K, Asher SA (2000) Photonic crystal chemical sensors: pH and ionic strength. J Am Chem Soc 122:9534–9537CrossRef Lee K, Asher SA (2000) Photonic crystal chemical sensors: pH and ionic strength. J Am Chem Soc 122:9534–9537CrossRef
57.
go back to reference Holtz JH, Asher SA (1997) Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389:829–832CrossRef Holtz JH, Asher SA (1997) Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389:829–832CrossRef
58.
go back to reference Lim HS, Lee J, Walish JJ et al (2012) Dynamic swelling of tunable full-color block copolymer photonic gels via counterion exchange. ACS Nano 6:8933–8939CrossRef Lim HS, Lee J, Walish JJ et al (2012) Dynamic swelling of tunable full-color block copolymer photonic gels via counterion exchange. ACS Nano 6:8933–8939CrossRef
59.
go back to reference Xu XL, Goponenko AV, Asher SA (2008) Polymerized polyhema photonic crystals: pH and ethanol sensor materials. J Am Chem Soc 130:3113–3119CrossRef Xu XL, Goponenko AV, Asher SA (2008) Polymerized polyhema photonic crystals: pH and ethanol sensor materials. J Am Chem Soc 130:3113–3119CrossRef
60.
go back to reference Cui QZ, Wang W, Gu BH et al (2012) A combined physical–chemical polymerization process for fabrication of nanoparticle—hydrogel sensing materials. Macromolecules 45:8382–8386CrossRef Cui QZ, Wang W, Gu BH et al (2012) A combined physical–chemical polymerization process for fabrication of nanoparticle—hydrogel sensing materials. Macromolecules 45:8382–8386CrossRef
61.
go back to reference Zhang ML, Feng J, Zheng ML et al (2014) Inverse opal hydrogel sensor for the detection of pH and mercury ions. RSC Adv 4:20567–20572CrossRef Zhang ML, Feng J, Zheng ML et al (2014) Inverse opal hydrogel sensor for the detection of pH and mercury ions. RSC Adv 4:20567–20572CrossRef
62.
go back to reference Lee YJ, Braun PV (2003) Tunable inverse opal hydrogel pH sensors. Adv Mater 15:563–566CrossRef Lee YJ, Braun PV (2003) Tunable inverse opal hydrogel pH sensors. Adv Mater 15:563–566CrossRef
63.
go back to reference Xue F, Meng ZH, Qi FL et al (2014) Two-dimensional inverse opal hydrogel for pH sensing. Analyst 139:6192–6196CrossRef Xue F, Meng ZH, Qi FL et al (2014) Two-dimensional inverse opal hydrogel for pH sensing. Analyst 139:6192–6196CrossRef
64.
go back to reference Xia HW, Zhao JP, Meng C et al (2011) Amphoteric polymeric photonic crystal with U-shaped pH response developed by intercalation polymerization. Soft Matter 7:4156–4159CrossRef Xia HW, Zhao JP, Meng C et al (2011) Amphoteric polymeric photonic crystal with U-shaped pH response developed by intercalation polymerization. Soft Matter 7:4156–4159CrossRef
65.
go back to reference Shin J, Braun PV, Lee W (2010) Fast response photonic crystal pH sensor based on templated photo-polymerized hydrogel inverse opal. Sens Actuators B Chem 150:183–190CrossRef Shin J, Braun PV, Lee W (2010) Fast response photonic crystal pH sensor based on templated photo-polymerized hydrogel inverse opal. Sens Actuators B Chem 150:183–190CrossRef
66.
go back to reference Yetisen AK, Butt H, Vasconcellos F et al (2014) Light-directed writing of chemically tunable narrow-band holographic sensors. Adv Optical Mater 2:250–254CrossRef Yetisen AK, Butt H, Vasconcellos F et al (2014) Light-directed writing of chemically tunable narrow-band holographic sensors. Adv Optical Mater 2:250–254CrossRef
67.
go back to reference Jiang HL, Zhu YH, Chen C et al (2012) Photonic crystal pH and metal cation sensors based on poly(vinyl alcohol) hydrogel. New J Chem 36:1051–1056CrossRef Jiang HL, Zhu YH, Chen C et al (2012) Photonic crystal pH and metal cation sensors based on poly(vinyl alcohol) hydrogel. New J Chem 36:1051–1056CrossRef
68.
go back to reference Griffete N, Frederich H, Maitre A et al (2011) Photonic crystal pH sensor containing a planar defect for fast and enhanced response. J Mater Chem 21:13052–13055CrossRef Griffete N, Frederich H, Maitre A et al (2011) Photonic crystal pH sensor containing a planar defect for fast and enhanced response. J Mater Chem 21:13052–13055CrossRef
69.
go back to reference Li C, Lotsch BV (2012) Stimuli-responsive 2D polyelectrolyte photonic crystals for optically encoded pH sensing. Chem Commun 48:6169–6171CrossRef Li C, Lotsch BV (2012) Stimuli-responsive 2D polyelectrolyte photonic crystals for optically encoded pH sensing. Chem Commun 48:6169–6171CrossRef
70.
go back to reference Fenzl C, Wilhelm S, Hirsch T et al (2013) Optical sensing of the ionic strength using photonic crystals in a hydrogel matrix. ACS Appl Mater Interfaces 5:173–178CrossRef Fenzl C, Wilhelm S, Hirsch T et al (2013) Optical sensing of the ionic strength using photonic crystals in a hydrogel matrix. ACS Appl Mater Interfaces 5:173–178CrossRef
71.
go back to reference Arsenault AC, Puzzo DP, Manners I et al (2007) Photonic-crystal full-colour displays. Nat Photonics 1:468–472CrossRef Arsenault AC, Puzzo DP, Manners I et al (2007) Photonic-crystal full-colour displays. Nat Photonics 1:468–472CrossRef
72.
go back to reference Puzzo DP, Arsenault AC, Manners I et al (2009) Electroactive inverse opal: a single material for all colors. Angew Chem Int Ed 48:943–947CrossRef Puzzo DP, Arsenault AC, Manners I et al (2009) Electroactive inverse opal: a single material for all colors. Angew Chem Int Ed 48:943–947CrossRef
73.
go back to reference Shim TS, Kim SH, Sim JY et al (2010) Dynamic modulation of photonic bandgaps in crystalline colloidal arrays under electric field. Adv Mater 22:4494–4498CrossRef Shim TS, Kim SH, Sim JY et al (2010) Dynamic modulation of photonic bandgaps in crystalline colloidal arrays under electric field. Adv Mater 22:4494–4498CrossRef
74.
go back to reference Walish JJ, Kang YJ, Mickiewicz RA et al (2009) Bioinspired electrochemically tunable block copolymer full color pixels. Adv Mater 21:3078–3081CrossRef Walish JJ, Kang YJ, Mickiewicz RA et al (2009) Bioinspired electrochemically tunable block copolymer full color pixels. Adv Mater 21:3078–3081CrossRef
75.
go back to reference Lu YJ, Xia HW, Zhang GZ et al (2009) Electrically tunable block copolymer photonic crystals with a full color display. J Mater Chem 19:5952–5955CrossRef Lu YJ, Xia HW, Zhang GZ et al (2009) Electrically tunable block copolymer photonic crystals with a full color display. J Mater Chem 19:5952–5955CrossRef
76.
go back to reference Bibette J (1993) Monodisperse ferrofluid emulsions. J Magn Magn Mater 122:37–41CrossRef Bibette J (1993) Monodisperse ferrofluid emulsions. J Magn Magn Mater 122:37–41CrossRef
77.
go back to reference Xu XL, Friedman G, Humfeld KD et al (2001) Superparamagnetic photonic crystals. Adv Mater 13:1681–1684CrossRef Xu XL, Friedman G, Humfeld KD et al (2001) Superparamagnetic photonic crystals. Adv Mater 13:1681–1684CrossRef
78.
go back to reference Kim H, Ge JP, Kim J et al (2009) Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal. Nat Photonics 3:534–540CrossRef Kim H, Ge JP, Kim J et al (2009) Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal. Nat Photonics 3:534–540CrossRef
79.
go back to reference Hu HB, Chen QW, Tang J et al (2012) Photonic anti-counterfeiting using structural colors derived from magneticresponsive photonic crystals with double photonic bandgap heterostructures. J Mater Chem 22:11048–11053CrossRef Hu HB, Chen QW, Tang J et al (2012) Photonic anti-counterfeiting using structural colors derived from magneticresponsive photonic crystals with double photonic bandgap heterostructures. J Mater Chem 22:11048–11053CrossRef
80.
go back to reference Ge JP, He L, Goebl J et al (2009) Assembly of magnetically tunable photonic crystals in nonpolar solvents. J Am Chem Soc 131:3484–3486CrossRef Ge JP, He L, Goebl J et al (2009) Assembly of magnetically tunable photonic crystals in nonpolar solvents. J Am Chem Soc 131:3484–3486CrossRef
81.
go back to reference Ge JP, Hu YX, Zhang TR et al (2008) Self-assembly and field-responsive optical diffractions of superparamagnetic colloids. Langmuir 24:3671–3680CrossRef Ge JP, Hu YX, Zhang TR et al (2008) Self-assembly and field-responsive optical diffractions of superparamagnetic colloids. Langmuir 24:3671–3680CrossRef
82.
go back to reference Kim J, Song Y, He L et al (2011) Real-time optofluidic synthesis of magnetochromatic microspheres for reversible structural color patterning. Small 7:1163–1168CrossRef Kim J, Song Y, He L et al (2011) Real-time optofluidic synthesis of magnetochromatic microspheres for reversible structural color patterning. Small 7:1163–1168CrossRef
83.
go back to reference Kamenjicki M, Lednev IK, Mikhonin A et al (2003) Photochemically controlled photonic crystals. Adv Funct Mater 13:774–780CrossRef Kamenjicki M, Lednev IK, Mikhonin A et al (2003) Photochemically controlled photonic crystals. Adv Funct Mater 13:774–780CrossRef
84.
go back to reference Gu ZZ, Hayami S, Meng QB et al (2000) Control of photonic band structure by molecular aggregates. J Am Chem Soc 122:10730–10731CrossRef Gu ZZ, Hayami S, Meng QB et al (2000) Control of photonic band structure by molecular aggregates. J Am Chem Soc 122:10730–10731CrossRef
85.
go back to reference Kamenjicki M, Lednev IK, Asher SA (2004) Photoresponsive azobenzene photonic crystals. J Phys Chem B 108:12637–12639CrossRef Kamenjicki M, Lednev IK, Asher SA (2004) Photoresponsive azobenzene photonic crystals. J Phys Chem B 108:12637–12639CrossRef
86.
go back to reference Gu ZZ, Iyoda T, Fujishima A et al (2001) Photo-reversible regulation of optical stop bands. Adv Mater 13:1295–1298CrossRef Gu ZZ, Iyoda T, Fujishima A et al (2001) Photo-reversible regulation of optical stop bands. Adv Mater 13:1295–1298CrossRef
87.
go back to reference Holtz JH, Holtz JS, Munro CH et al (1998) Intelligent polymerized crystalline colloidal arrays: novel chemical sensor materials. Anal Chem 70:780–791CrossRef Holtz JH, Holtz JS, Munro CH et al (1998) Intelligent polymerized crystalline colloidal arrays: novel chemical sensor materials. Anal Chem 70:780–791CrossRef
88.
go back to reference Nakayama D, Takeoka Y, Watanabe M et al (2003) Simple and precise preparation of a porous gel for a colorimetric glucose sensor by a templating technique. Angew Chem Int Ed 42:4197–4200CrossRef Nakayama D, Takeoka Y, Watanabe M et al (2003) Simple and precise preparation of a porous gel for a colorimetric glucose sensor by a templating technique. Angew Chem Int Ed 42:4197–4200CrossRef
89.
go back to reference Zhao YJ, Zhao XW, Tang BC et al (2010) Quantum-dot-tagged bioresponsive hydrogel suspension array for multiplex label-free dna detection. Adv Funct Mater 20:976–982CrossRef Zhao YJ, Zhao XW, Tang BC et al (2010) Quantum-dot-tagged bioresponsive hydrogel suspension array for multiplex label-free dna detection. Adv Funct Mater 20:976–982CrossRef
90.
go back to reference Zhang JT, Chao X, Liu XY et al (2013) Two-dimensional array Debye ring diffraction protein recognition sensing. Chem Commun 49:6337–6339CrossRef Zhang JT, Chao X, Liu XY et al (2013) Two-dimensional array Debye ring diffraction protein recognition sensing. Chem Commun 49:6337–6339CrossRef
91.
go back to reference Liu M, Yu LP (2013) A novel platform for sensing an amino acid by integrating hydrogel photonic crystals with ternary complexes. Analyst 138:3376–3379CrossRef Liu M, Yu LP (2013) A novel platform for sensing an amino acid by integrating hydrogel photonic crystals with ternary complexes. Analyst 138:3376–3379CrossRef
92.
go back to reference Liu Y, Zhang YJ, Guan Y (2009) New polymerized crystalline colloidal array for glucose sensing. Chem Commun 1:1867–1869CrossRef Liu Y, Zhang YJ, Guan Y (2009) New polymerized crystalline colloidal array for glucose sensing. Chem Commun 1:1867–1869CrossRef
93.
go back to reference Kabilan S, Blyth J, Lee MC et al (2004) Glucose-sensitive holographic sensors. J Mol Recognit 17:162–166CrossRef Kabilan S, Blyth J, Lee MC et al (2004) Glucose-sensitive holographic sensors. J Mol Recognit 17:162–166CrossRef
94.
go back to reference Hong XD, Peng Y, Bai JL et al (2013) A novel opal closest-packing photonic crystal for naked-eye glucose detection. Small 10:1308–1313CrossRef Hong XD, Peng Y, Bai JL et al (2013) A novel opal closest-packing photonic crystal for naked-eye glucose detection. Small 10:1308–1313CrossRef
95.
go back to reference Yang ZK, Shi DJ, Chen MQ et al (2015) Free-standing molecularly imprinted photonic hydrogels based on b-cyclodextrin for the visual detection of L-tryptophan. Anal Methods 7:8352–8359CrossRef Yang ZK, Shi DJ, Chen MQ et al (2015) Free-standing molecularly imprinted photonic hydrogels based on b-cyclodextrin for the visual detection of L-tryptophan. Anal Methods 7:8352–8359CrossRef
96.
go back to reference MacConaghy KI, Chadly DM, Stoykovich MP et al (2015) Label-free detection of missense mutations and methylation differences in the p53 gene using optically diffracting hydrogels. Analyst 140:6354–6362CrossRef MacConaghy KI, Chadly DM, Stoykovich MP et al (2015) Label-free detection of missense mutations and methylation differences in the p53 gene using optically diffracting hydrogels. Analyst 140:6354–6362CrossRef
Metadata
Title
Responsive Photonic Crystals with Tunable Structural Color
Authors
Xiaolu Jia
Haiying Tan
Jintao Zhu
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-57003-7_5

Premium Partners