Skip to main content
Top

2017 | OriginalPaper | Chapter

2. Revealing Localized Electrochemical Transition of Sulfur in Sub-nanometer Confinement

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A microporous-mesoporous carbon with graphitic structure was developed as a matrix for the sulfur cathode of a Li–S cell using a mixed carbonate electrolyte. Sulfur was selectively introduced into the carbon micropores by a melt adsorption-solvent extraction strategy. The micropores act as solvent-restricted reactors for sulfur lithiation that promise long cycle stability. The mesopores remain unfilled and provide an ion migration pathway, while the graphitic structure contributes significantly to low-resistance electron transfer. The cathode is able to operate reversibly over 800 cycles with a 1.8 C discharge–recharge rate. This integration of a micropore reactor, a mesopore ion reservoir, and a graphitic electron conductor represents a generalized strategy to be adopted in research on advanced sulfur cathodes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11(1):19–29CrossRef Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11(1):19–29CrossRef
2.
go back to reference Ji XL, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater 8(6):500–506CrossRef Ji XL, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater 8(6):500–506CrossRef
3.
go back to reference Manthiram A, Fu Y, Su Y-S (2012) Challenges and prospects of lithium–sulfur batteries. Acc Chem Res 46(5):1125–1134CrossRef Manthiram A, Fu Y, Su Y-S (2012) Challenges and prospects of lithium–sulfur batteries. Acc Chem Res 46(5):1125–1134CrossRef
4.
go back to reference Evers S, Nazar LF (2013) New approaches for high energy density lithium–sulfur battery cathodes. Acc Chem Res 46(5):1135–1143CrossRef Evers S, Nazar LF (2013) New approaches for high energy density lithium–sulfur battery cathodes. Acc Chem Res 46(5):1135–1143CrossRef
5.
go back to reference Yang Y, Zheng G, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42(7):3018–3032CrossRef Yang Y, Zheng G, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42(7):3018–3032CrossRef
6.
go back to reference Zhang C, Wu HB, Yuan C, Guo Z, Lou XW (2012) Confining sulfur in double-shelled hollow carbon spheres for lithium–sulfur batteries. Angew Chem Int Ed 51(38):9592–9595CrossRef Zhang C, Wu HB, Yuan C, Guo Z, Lou XW (2012) Confining sulfur in double-shelled hollow carbon spheres for lithium–sulfur batteries. Angew Chem Int Ed 51(38):9592–9595CrossRef
7.
go back to reference Chung S-H, Manthiram A (2014) Carbonized eggshell membrane as a natural polysulfide reservoir for highly reversible Li–S batteries. Adv Mater 26(9):1360–1365CrossRef Chung S-H, Manthiram A (2014) Carbonized eggshell membrane as a natural polysulfide reservoir for highly reversible Li–S batteries. Adv Mater 26(9):1360–1365CrossRef
8.
go back to reference Shim J, Striebel KA, Cairns EJ (2002) The lithium/sulfur rechargeable cell—effects of electrode composition and solvent on cell performance. J Electrochem Soc 149(10):A1321–A1325CrossRef Shim J, Striebel KA, Cairns EJ (2002) The lithium/sulfur rechargeable cell—effects of electrode composition and solvent on cell performance. J Electrochem Soc 149(10):A1321–A1325CrossRef
9.
go back to reference Marmorstein D et al (2000) Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes. J Power Sources 89(2):219–226CrossRef Marmorstein D et al (2000) Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes. J Power Sources 89(2):219–226CrossRef
10.
go back to reference Ryu HS et al (2006) Discharge behavior of lithium/sulfur cell with TEGDME based electrolyte at low temperature. J Power Sources 163(1):201–206CrossRef Ryu HS et al (2006) Discharge behavior of lithium/sulfur cell with TEGDME based electrolyte at low temperature. J Power Sources 163(1):201–206CrossRef
11.
go back to reference Shin JH, Cairns EJ (2008) N-Methyl-(n-butyl)pyrrolidinium bis(trifluoromethanesulfonyl)imide-LiTFSI-poly(ethylene glycol) dimethyl ether mixture as a Li/S cell electrolyte. J Power Sources 177(2):537–545CrossRef Shin JH, Cairns EJ (2008) N-Methyl-(n-butyl)pyrrolidinium bis(trifluoromethanesulfonyl)imide-LiTFSI-poly(ethylene glycol) dimethyl ether mixture as a Li/S cell electrolyte. J Power Sources 177(2):537–545CrossRef
12.
go back to reference Choi YJ et al (2007) Electrochemical properties of sulfur electrode containing nano Al2O3 for lithium/sulfur cell. Phys Scripta T129:62–65CrossRef Choi YJ et al (2007) Electrochemical properties of sulfur electrode containing nano Al2O3 for lithium/sulfur cell. Phys Scripta T129:62–65CrossRef
13.
go back to reference Song MS et al (2004) Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li/S secondary batteries. J Electrochem Soc 151(6):A791–A795CrossRef Song MS et al (2004) Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li/S secondary batteries. J Electrochem Soc 151(6):A791–A795CrossRef
14.
go back to reference Wang JL, Yang J, Xie JY, Xu NX (2002) A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries. Adv Mater 14(13–14):963–965CrossRef Wang JL, Yang J, Xie JY, Xu NX (2002) A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries. Adv Mater 14(13–14):963–965CrossRef
15.
go back to reference Yang Y et al (2011) Improving the performance of lithium–sulfur batteries by conductive polymer coating. ACS Nano 5(11):9187–9193CrossRef Yang Y et al (2011) Improving the performance of lithium–sulfur batteries by conductive polymer coating. ACS Nano 5(11):9187–9193CrossRef
16.
go back to reference Ji LW et al (2011) Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells. Energy Environ Sci 4(12):5053–5059CrossRef Ji LW et al (2011) Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells. Energy Environ Sci 4(12):5053–5059CrossRef
17.
go back to reference Zheng GY, Yang Y, Cha JJ, Hong SS, Cui Y (2011) Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett 11(10):4462–4467CrossRef Zheng GY, Yang Y, Cha JJ, Hong SS, Cui Y (2011) Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett 11(10):4462–4467CrossRef
18.
go back to reference Elazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D (2011) Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li–S batteries. Adv Mater 23(47):5641–5644CrossRef Elazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D (2011) Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li–S batteries. Adv Mater 23(47):5641–5644CrossRef
19.
go back to reference Guo JC, Xu YH, Wang CS (2011) Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries. Nano Lett 11(10):4288–4294CrossRef Guo JC, Xu YH, Wang CS (2011) Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries. Nano Lett 11(10):4288–4294CrossRef
20.
go back to reference Cao YL et al (2011) Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. Phys Chem Chem Phys 13(17):7660–7665CrossRef Cao YL et al (2011) Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. Phys Chem Chem Phys 13(17):7660–7665CrossRef
21.
go back to reference Wang HL et al (2011) Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11(7):2644–2647CrossRef Wang HL et al (2011) Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11(7):2644–2647CrossRef
22.
go back to reference Schuster J et al (2012) Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries. Angew Chem Int Ed 51(15):3591–3595CrossRef Schuster J et al (2012) Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries. Angew Chem Int Ed 51(15):3591–3595CrossRef
23.
go back to reference Wang J et al (2008) Sulfur-mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries. Carbon 46(2):229–235CrossRef Wang J et al (2008) Sulfur-mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries. Carbon 46(2):229–235CrossRef
24.
go back to reference Zhang B, Qin X, Li GR, Gao XP (2010) Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ Sci 3(10):1531–1537CrossRef Zhang B, Qin X, Li GR, Gao XP (2010) Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ Sci 3(10):1531–1537CrossRef
25.
go back to reference Lai C, Gao XP, Zhang B, Yan TY, Zhou Z (2009) Synthesis and electrochemical performance of sulfur/highly porous carbon composites. J Phys Chem C 113(11):4712–4716CrossRef Lai C, Gao XP, Zhang B, Yan TY, Zhou Z (2009) Synthesis and electrochemical performance of sulfur/highly porous carbon composites. J Phys Chem C 113(11):4712–4716CrossRef
26.
go back to reference Gao J, Lowe MA, Kiya Y, Abruna HD (2011) Effects of liquid electrolytes on the charge–discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies. J Phys Chem C 115(50):25132–25137CrossRef Gao J, Lowe MA, Kiya Y, Abruna HD (2011) Effects of liquid electrolytes on the charge–discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies. J Phys Chem C 115(50):25132–25137CrossRef
27.
go back to reference Aurbach D et al (2009) On the surface chemical aspects of very high energy density, rechargeable li–sulfur batteries. J Electrochem Soc 156(8):A694–A702CrossRef Aurbach D et al (2009) On the surface chemical aspects of very high energy density, rechargeable li–sulfur batteries. J Electrochem Soc 156(8):A694–A702CrossRef
28.
go back to reference Hassoun J, Scrosati B (2010) A high-performance polymer tin sulfur lithium ion battery. Angew Chem Int Ed 49(13):2371–2374CrossRef Hassoun J, Scrosati B (2010) A high-performance polymer tin sulfur lithium ion battery. Angew Chem Int Ed 49(13):2371–2374CrossRef
29.
go back to reference Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem Int Ed 47(2):373–376CrossRef Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem Int Ed 47(2):373–376CrossRef
30.
go back to reference Xin S et al (2012) Smaller sulfur molecules promise better lithium–sulfur batteries. J Am Chem Soc 134(45):18510–18513CrossRef Xin S et al (2012) Smaller sulfur molecules promise better lithium–sulfur batteries. J Am Chem Soc 134(45):18510–18513CrossRef
31.
go back to reference Cheon SE et al (2003) Rechargeable lithium sulfur battery-II. Rate capability and cycle characteristics. J Electrochem Soc 150(6):A800–A805CrossRef Cheon SE et al (2003) Rechargeable lithium sulfur battery-II. Rate capability and cycle characteristics. J Electrochem Soc 150(6):A800–A805CrossRef
32.
go back to reference Shinkarev VV, Fenelonov V, Kuvshinov GG (2003) Sulfur distribution on the surface of mesoporous nanofibrous carbon. Carbon 41(2):295–302CrossRef Shinkarev VV, Fenelonov V, Kuvshinov GG (2003) Sulfur distribution on the surface of mesoporous nanofibrous carbon. Carbon 41(2):295–302CrossRef
33.
go back to reference Wang D-W et al (2012) A microporous-mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li–S batteries. Phys Chem Chem Phys 14(24):8703–8710CrossRef Wang D-W et al (2012) A microporous-mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li–S batteries. Phys Chem Chem Phys 14(24):8703–8710CrossRef
34.
go back to reference Chmiola J et al (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313(5794):1760–1763CrossRef Chmiola J et al (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313(5794):1760–1763CrossRef
35.
go back to reference Wang D-W et al (2013) Carbon–sulfur composites for Li–S batteries: status and prospects. J Mater Chem A 1(33):9382–9394CrossRef Wang D-W et al (2013) Carbon–sulfur composites for Li–S batteries: status and prospects. J Mater Chem A 1(33):9382–9394CrossRef
36.
go back to reference Cheon SE et al (2003) Rechargeable lithium sulfur battery-II. Rate capability and cycle characteristics. J Electrochem Soc 150(6):A800–A805CrossRef Cheon SE et al (2003) Rechargeable lithium sulfur battery-II. Rate capability and cycle characteristics. J Electrochem Soc 150(6):A800–A805CrossRef
Metadata
Title
Revealing Localized Electrochemical Transition of Sulfur in Sub-nanometer Confinement
Author
Guangmin Zhou
Copyright Year
2017
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-3406-0_2