Skip to main content
Top
Published in: Polymer Bulletin 4/2017

04-08-2016 | Original Paper

Reversible capture and release of carbon dioxide by binary system of polyamidine and polyethylene glycol

Authors: Yoshio Furusho, Takeshi Endo

Published in: Polymer Bulletin | Issue 4/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

CO2 absorbents were prepared from polyethylene glycol and the polyamidines having N,N′-disubstituted amidine structure in the main chain synthesized through acid-catalyzed melt polycondensation of orthoesters and α,ω-diamines. The homogeneous binary mixtures with the polyamidines captured CO2 much more efficiently under CO2 flow than the one with polyethyleneimine. Furthermore, we investigated the CO2 capture and release by the binary mixtures in terms of effects of the volatility and the structure of polyamidines, temperature, and polyethylene glycol. Taking into consideration the results thus obtained, we conducted CO2 capture/release cycles with the CO2 capture step at 40 °C and with the CO2 releasing step at 80 °C in an alternating manner, thereby demonstrating the repeatability of CO2 capture and release by the binary system of the polyamidine and polyethylene glycol.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder S, Mackenzie FT, Moore B III, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science 290:291–296CrossRef Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder S, Mackenzie FT, Moore B III, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science 290:291–296CrossRef
2.
go back to reference Rochelle GT (2009) Amine scrubbing for CO2 capture. Science 325:1652–1654CrossRef Rochelle GT (2009) Amine scrubbing for CO2 capture. Science 325:1652–1654CrossRef
3.
go back to reference Hunt AJ, Sin EHK, Marriott R, Clark JH (2010) Generation, capture, and utilization of industrial carbon dioxide. ChemSusChem 3:306–322CrossRef Hunt AJ, Sin EHK, Marriott R, Clark JH (2010) Generation, capture, and utilization of industrial carbon dioxide. ChemSusChem 3:306–322CrossRef
4.
go back to reference Jones CW (2011) CO2 capture from dilute gases as a component of modern global carbon management. Annu Rev Chem Biomol Eng 2:31–52CrossRef Jones CW (2011) CO2 capture from dilute gases as a component of modern global carbon management. Annu Rev Chem Biomol Eng 2:31–52CrossRef
5.
go back to reference Monastersky R (2013) Global carbon dioxide levels near worrisome milestone. Nature 497:13–14CrossRef Monastersky R (2013) Global carbon dioxide levels near worrisome milestone. Nature 497:13–14CrossRef
6.
go back to reference D’Alessandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed 49:6058–6082CrossRef D’Alessandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed 49:6058–6082CrossRef
7.
go back to reference Zhang Z, Yao Z-Z, Xiang S, Chen B (2014) Perspective of microporous metal-organic frameworks for CO2 capture and separation. Energy Environ Sci 7:2868–2899CrossRef Zhang Z, Yao Z-Z, Xiang S, Chen B (2014) Perspective of microporous metal-organic frameworks for CO2 capture and separation. Energy Environ Sci 7:2868–2899CrossRef
8.
go back to reference Lu X, Jin D, Wei S, Wang Z, An C, Guo W (2015) Strategies to enhance CO2 capture and separation based on engineering absorbent materials. J Mater Chem A 3:12118–12132CrossRef Lu X, Jin D, Wei S, Wang Z, An C, Guo W (2015) Strategies to enhance CO2 capture and separation based on engineering absorbent materials. J Mater Chem A 3:12118–12132CrossRef
9.
go back to reference Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae T-H, Long JR (2012) Carbon dioxide capture in metal-organic frameworks. Chem Rev 112:724–781CrossRef Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae T-H, Long JR (2012) Carbon dioxide capture in metal-organic frameworks. Chem Rev 112:724–781CrossRef
10.
go back to reference Millward AR, Yaghi OM (2005) Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999CrossRef Millward AR, Yaghi OM (2005) Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999CrossRef
11.
go back to reference McDonald TM, Lee WR, Mason JA, Wiers BM, Hong CS, Long JR (2012) Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal, äìorganic framework mmen-Mg2(dobpdc). J Am Chem Soc 134:7056–7065CrossRef McDonald TM, Lee WR, Mason JA, Wiers BM, Hong CS, Long JR (2012) Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal, äìorganic framework mmen-Mg2(dobpdc). J Am Chem Soc 134:7056–7065CrossRef
12.
go back to reference McDonald TM, Mason JA, Kong X, Bloch ED, Gygi D, Dani A, Crocella V, Giordanino F, Odoh SO, Drisdell WS, Vlaisavljevich B, Dzubak AL, Poloni R, Schnell SK, Planas N, Lee K, Pascal T, Wan LF, Prendergast D, Neaton JB, Smit B, Kortright JB, Gagliardi L, Bordiga S, Reimer JA, Long JR (2015) Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature 519:303–308CrossRef McDonald TM, Mason JA, Kong X, Bloch ED, Gygi D, Dani A, Crocella V, Giordanino F, Odoh SO, Drisdell WS, Vlaisavljevich B, Dzubak AL, Poloni R, Schnell SK, Planas N, Lee K, Pascal T, Wan LF, Prendergast D, Neaton JB, Smit B, Kortright JB, Gagliardi L, Bordiga S, Reimer JA, Long JR (2015) Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature 519:303–308CrossRef
13.
go back to reference Tsuda T, Fujiwara T (1992) Polyethyleneimine and macrocyclic polyamine silica gels acting as carbon dioxide absorbents. J Chem Soc Chem Commun 1659–1661 Tsuda T, Fujiwara T (1992) Polyethyleneimine and macrocyclic polyamine silica gels acting as carbon dioxide absorbents. J Chem Soc Chem Commun 1659–1661
14.
go back to reference Choi S, Drese JH, Eisenberger PM, Jones CW (2011) Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air. Environ Sci Technol 45:2420–2427CrossRef Choi S, Drese JH, Eisenberger PM, Jones CW (2011) Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air. Environ Sci Technol 45:2420–2427CrossRef
15.
go back to reference Goeppert A, Czaun M, May RB, Prakash GKS, Olah GA, Narayanan SR (2011) Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent. J Am Chem Soc 133:20164–20167CrossRef Goeppert A, Czaun M, May RB, Prakash GKS, Olah GA, Narayanan SR (2011) Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent. J Am Chem Soc 133:20164–20167CrossRef
16.
go back to reference Goeppert A, Zhang H, Czaun M, May RB, Prakash GKS, Olah GA, Narayanan SR (2014) Easily regenerable solid adsorbents based on polyamines for carbon dioxide capture from the air. ChemSusChem 7:1386–1397CrossRef Goeppert A, Zhang H, Czaun M, May RB, Prakash GKS, Olah GA, Narayanan SR (2014) Easily regenerable solid adsorbents based on polyamines for carbon dioxide capture from the air. ChemSusChem 7:1386–1397CrossRef
17.
go back to reference Goeppert A, Meth S, Prakash GKS, Olah GA (2010) Nanostructured silica as a support for regenerable high-capacity organoamine-based CO2 sorbents. Energy Environ Sci 3:1949–1960CrossRef Goeppert A, Meth S, Prakash GKS, Olah GA (2010) Nanostructured silica as a support for regenerable high-capacity organoamine-based CO2 sorbents. Energy Environ Sci 3:1949–1960CrossRef
18.
go back to reference Meth S, Goeppert A, Prakash GKS, Olah GA (2012) Silica nanoparticles as supports for regenerable co2 sorbents. Energy Fuels 26:3082–3090CrossRef Meth S, Goeppert A, Prakash GKS, Olah GA (2012) Silica nanoparticles as supports for regenerable co2 sorbents. Energy Fuels 26:3082–3090CrossRef
19.
go back to reference Al-Azzawi OM, Hofmann CM, Baker GA, Baker SN (2012) Nanosilica-supported polyethoxyamines as low-cost, reversible carbon dioxide sorbents. J Colloid Interface Sci 385:154–159CrossRef Al-Azzawi OM, Hofmann CM, Baker GA, Baker SN (2012) Nanosilica-supported polyethoxyamines as low-cost, reversible carbon dioxide sorbents. J Colloid Interface Sci 385:154–159CrossRef
20.
go back to reference Zhu J, Baker SN (2014) Lewis base polymers for modifying sorption and regeneration abilities of amine-based carbon dioxide capture materials. ACS Sustainable Chem Eng 2:2666–2674CrossRef Zhu J, Baker SN (2014) Lewis base polymers for modifying sorption and regeneration abilities of amine-based carbon dioxide capture materials. ACS Sustainable Chem Eng 2:2666–2674CrossRef
21.
go back to reference Harlick PJE, Sayari A (2006) Applications of pore-expanded mesoporous silicas. 3. Triamine silane grafting for enhanced CO2 adsorption. Ind Eng Chem Res 45:3248–3255CrossRef Harlick PJE, Sayari A (2006) Applications of pore-expanded mesoporous silicas. 3. Triamine silane grafting for enhanced CO2 adsorption. Ind Eng Chem Res 45:3248–3255CrossRef
22.
go back to reference Kuwahara Y, Kang D-Y, Copeland JR, Brunelli NA, Didas SA, Bollini P, Sievers C, Kamegawa T, Yamashita H, Jones CW (2012) Dramatic enhancement of CO2 uptake by poly(ethyleneimine) using zirconosilicate supports. J Am Chem Soc 134:10757–10760CrossRef Kuwahara Y, Kang D-Y, Copeland JR, Brunelli NA, Didas SA, Bollini P, Sievers C, Kamegawa T, Yamashita H, Jones CW (2012) Dramatic enhancement of CO2 uptake by poly(ethyleneimine) using zirconosilicate supports. J Am Chem Soc 134:10757–10760CrossRef
23.
go back to reference Araki S, Kiyohara Y, Tanaka S, Miyake Y (2012) Adsorption of carbon dioxide and nitrogen on zeolite rho prepared by hydrothermal synthesis using 18-crown-6 ether. J Colloid Interface Sci 388:185–190CrossRef Araki S, Kiyohara Y, Tanaka S, Miyake Y (2012) Adsorption of carbon dioxide and nitrogen on zeolite rho prepared by hydrothermal synthesis using 18-crown-6 ether. J Colloid Interface Sci 388:185–190CrossRef
24.
go back to reference Lu W, Sculley JP, Yuan D, Krishna R, Wei Z, Zhou H-C (2012) Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas. Angew Chem Int Ed 51:7480–7484CrossRef Lu W, Sculley JP, Yuan D, Krishna R, Wei Z, Zhou H-C (2012) Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas. Angew Chem Int Ed 51:7480–7484CrossRef
25.
go back to reference Nagai D, Suzuki A, Maki Y, Takeno H (2011) Reversible chain association/dissociation via a CO2 responsive crosslinking/decrosslinking system. Chem Comm 47:8856–8858CrossRef Nagai D, Suzuki A, Maki Y, Takeno H (2011) Reversible chain association/dissociation via a CO2 responsive crosslinking/decrosslinking system. Chem Comm 47:8856–8858CrossRef
26.
go back to reference Nagai D, Suzuki A, Kuribayashi T (2011) Synthesis of hydrogels from polyallylamine with carbon dioxide as gellant: development of reversible co2 absorbent. Macromol Rapid Commun 32:404–410CrossRef Nagai D, Suzuki A, Kuribayashi T (2011) Synthesis of hydrogels from polyallylamine with carbon dioxide as gellant: development of reversible co2 absorbent. Macromol Rapid Commun 32:404–410CrossRef
27.
go back to reference Han D, Tong X, Boissière O, Zhao Y (2012) General strategy for making CO2-switchable polymers. ACS Macro Lett 1:57–61CrossRef Han D, Tong X, Boissière O, Zhao Y (2012) General strategy for making CO2-switchable polymers. ACS Macro Lett 1:57–61CrossRef
28.
go back to reference Hoshino Y, Imamura K, Yue M, Inoue G, Miura Y (2012) Reversible absorption of CO2 triggered by phase transition of amine-containing micro- and nanogel particles. J Am Chem Soc 134:18177–18180CrossRef Hoshino Y, Imamura K, Yue M, Inoue G, Miura Y (2012) Reversible absorption of CO2 triggered by phase transition of amine-containing micro- and nanogel particles. J Am Chem Soc 134:18177–18180CrossRef
29.
go back to reference Morse AJ, Armes SP, Thompson KL, Dupin D, Fielding LA, Mills P, Swart R (2013) Novel pickering emulsifiers based on ph-responsive poly(2-(diethylamino)ethyl methacrylate) latexes. Langmuir 29:5466–5475CrossRef Morse AJ, Armes SP, Thompson KL, Dupin D, Fielding LA, Mills P, Swart R (2013) Novel pickering emulsifiers based on ph-responsive poly(2-(diethylamino)ethyl methacrylate) latexes. Langmuir 29:5466–5475CrossRef
30.
go back to reference Yue M, Hoshino Y, Ohshiro Y, Imamura K, Miura Y (2014) Temperature-responsive microgel films as reversible carbon dioxide absorbents in wet environment. Angew Chem Int Ed 53:2654–2657CrossRef Yue M, Hoshino Y, Ohshiro Y, Imamura K, Miura Y (2014) Temperature-responsive microgel films as reversible carbon dioxide absorbents in wet environment. Angew Chem Int Ed 53:2654–2657CrossRef
31.
go back to reference Sakaguchi T, Takeda A, Hashimoto T (2011) Highly gas-permeable silanol-functionalized poly(diphenylacetylene)s: synthesis, characterization, and gas permeation property. Macromolecules 44:6810–6817CrossRef Sakaguchi T, Takeda A, Hashimoto T (2011) Highly gas-permeable silanol-functionalized poly(diphenylacetylene)s: synthesis, characterization, and gas permeation property. Macromolecules 44:6810–6817CrossRef
32.
go back to reference Sakaguchi T, Katsura F, Iwase A, Hashimoto T (2014) CO2-permselective membranes of crosslinked poly(vinyl ether)s bearing oxyethylene chains. Polymer 55:1459–1466CrossRef Sakaguchi T, Katsura F, Iwase A, Hashimoto T (2014) CO2-permselective membranes of crosslinked poly(vinyl ether)s bearing oxyethylene chains. Polymer 55:1459–1466CrossRef
33.
go back to reference Sakaguchi T, Tsuzuki T, Masuda T, Hashimoto T (2014) Synthesis, gas permeability, and metal-induced gelation of poly(disubstituted acetylene)s having p, m-dimethoxyphenyl and p, m-dihydroxyphenyl groups. Polymer 55:1977–1983CrossRef Sakaguchi T, Tsuzuki T, Masuda T, Hashimoto T (2014) Synthesis, gas permeability, and metal-induced gelation of poly(disubstituted acetylene)s having p, m-dimethoxyphenyl and p, m-dihydroxyphenyl groups. Polymer 55:1977–1983CrossRef
34.
go back to reference Sakaguchi T, Shinoda Y, Hashimoto T (2014) Synthesis and gas permeability of nitrated and aminated poly(diphenylacetylene)s. Polymer 55:6680–6685CrossRef Sakaguchi T, Shinoda Y, Hashimoto T (2014) Synthesis and gas permeability of nitrated and aminated poly(diphenylacetylene)s. Polymer 55:6680–6685CrossRef
35.
go back to reference Bates ED, Mayton RD, Ntai I, Davis JH (2002) CO2 capture by a task-specific ionic liquid. J Am Chem Soc 124:926–927CrossRef Bates ED, Mayton RD, Ntai I, Davis JH (2002) CO2 capture by a task-specific ionic liquid. J Am Chem Soc 124:926–927CrossRef
36.
go back to reference Wang C-M, Mahurin SM, Luo H-M, Baker GA, Li H-R, Dai S (2010) Reversible and robust co2 capture by equimolar task-specific ionic liquid-superbase mixtures. Green Chem 12:870–874CrossRef Wang C-M, Mahurin SM, Luo H-M, Baker GA, Li H-R, Dai S (2010) Reversible and robust co2 capture by equimolar task-specific ionic liquid-superbase mixtures. Green Chem 12:870–874CrossRef
37.
go back to reference Wang C, Luo H, Luo X, Li H, Dai S (2010) Equimolar co2 capture by imidazolium-based ionic liquids and superbase systems. Green Chem 12:2019–2023CrossRef Wang C, Luo H, Luo X, Li H, Dai S (2010) Equimolar co2 capture by imidazolium-based ionic liquids and superbase systems. Green Chem 12:2019–2023CrossRef
38.
go back to reference Endo T, Nagai D, Monma T, Yamaguchi H, Ochiai B (2004) A novel construction of a reversible fixation-release system of carbon dioxide by amidines and their polymers. Macromolecules 37:2007–2009CrossRef Endo T, Nagai D, Monma T, Yamaguchi H, Ochiai B (2004) A novel construction of a reversible fixation-release system of carbon dioxide by amidines and their polymers. Macromolecules 37:2007–2009CrossRef
39.
go back to reference Ochiai B, Yokota K, Fujii A, Nagai D, Endo T (2008) Reversible trap-release of CO2 by polymers bearing dbu and dbn moieties. Macromolecules 41:1229–1236CrossRef Ochiai B, Yokota K, Fujii A, Nagai D, Endo T (2008) Reversible trap-release of CO2 by polymers bearing dbu and dbn moieties. Macromolecules 41:1229–1236CrossRef
40.
go back to reference Nagai D, Endo T (2009) Synthesis of 1 h-quinazoline-2,4-diones from 2-aminobenzonitriles by fixation of carbon dioxide with amidine moiety supported polymer at atmospheric pressure. J Polym Sci, Part A: Polym Chem 47:653–657CrossRef Nagai D, Endo T (2009) Synthesis of 1 h-quinazoline-2,4-diones from 2-aminobenzonitriles by fixation of carbon dioxide with amidine moiety supported polymer at atmospheric pressure. J Polym Sci, Part A: Polym Chem 47:653–657CrossRef
41.
go back to reference Barkakaty B, Morino K, Sudo A, Endo T (2010) Amidine-mediated delivery of CO2 from gas phase to reaction system for highly efficient synthesis of cyclic carbonates from epoxides. Green Chem 12:42–44CrossRef Barkakaty B, Morino K, Sudo A, Endo T (2010) Amidine-mediated delivery of CO2 from gas phase to reaction system for highly efficient synthesis of cyclic carbonates from epoxides. Green Chem 12:42–44CrossRef
42.
go back to reference Heldebrant DJ, Jessop PG, Thomas CA, Eckert CA, Liotta CL (2005) The reaction of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) with carbon dioxide. J Org Chem 70:5335–5338CrossRef Heldebrant DJ, Jessop PG, Thomas CA, Eckert CA, Liotta CL (2005) The reaction of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) with carbon dioxide. J Org Chem 70:5335–5338CrossRef
43.
go back to reference Jessop PG, Heldebrant DJ, Li X, Eckert CA, Liotta CL (2005) Green chemistry: reversible nonpolar-to-polar solvent. Nature 436:1102CrossRef Jessop PG, Heldebrant DJ, Li X, Eckert CA, Liotta CL (2005) Green chemistry: reversible nonpolar-to-polar solvent. Nature 436:1102CrossRef
44.
go back to reference Liu Y, Jessop PG, Cunningham M, Eckert CA, Liotta CL (2006) Switchable surfactants. Science 313:958–960CrossRef Liu Y, Jessop PG, Cunningham M, Eckert CA, Liotta CL (2006) Switchable surfactants. Science 313:958–960CrossRef
45.
go back to reference Heldebrant DJ, Yonker CR, Jessop PG, Phan L (2008) Organic liquid CO2 capture agents with high gravimetric CO2 capacity. Energy Environ Sci 1:487–493CrossRef Heldebrant DJ, Yonker CR, Jessop PG, Phan L (2008) Organic liquid CO2 capture agents with high gravimetric CO2 capacity. Energy Environ Sci 1:487–493CrossRef
46.
go back to reference Su X, Jessop PG, Cunningham MF (2012) Surfactant-free polymerization forming switchable latexes that can be aggregated and redispersed by CO2 removal and then readdition. Macromolecules 45:666–670CrossRef Su X, Jessop PG, Cunningham MF (2012) Surfactant-free polymerization forming switchable latexes that can be aggregated and redispersed by CO2 removal and then readdition. Macromolecules 45:666–670CrossRef
47.
go back to reference Zhang Q, Wang W-J, Lu Y, Li B-G, Zhu S (2011) Reversibly coagulatable and redispersible polystyrene latex prepared by emulsion polymerization of styrene containing switchable amidine. Macromolecules 44:6539–6545CrossRef Zhang Q, Wang W-J, Lu Y, Li B-G, Zhu S (2011) Reversibly coagulatable and redispersible polystyrene latex prepared by emulsion polymerization of styrene containing switchable amidine. Macromolecules 44:6539–6545CrossRef
48.
go back to reference Zhang Q, Yu G, Wang W-J, Yuan H, Li B-G, Zhu S (2012) Preparation of N2/CO2 triggered reversibly coagulatable and redispersible latexes by emulsion polymerization of styrene with a reactive switchable surfactant. Langmuir 28:5940–5946CrossRef Zhang Q, Yu G, Wang W-J, Yuan H, Li B-G, Zhu S (2012) Preparation of N2/CO2 triggered reversibly coagulatable and redispersible latexes by emulsion polymerization of styrene with a reactive switchable surfactant. Langmuir 28:5940–5946CrossRef
49.
go back to reference Heldebrant DJ, Jessop PG (2003) Liquid poly(ethylene glycol) and supercritical carbon dioxide: a benign biphasic solvent system for use and recycling of homogeneous catalysts. J Am Chem Soc 125:5600–5601CrossRef Heldebrant DJ, Jessop PG (2003) Liquid poly(ethylene glycol) and supercritical carbon dioxide: a benign biphasic solvent system for use and recycling of homogeneous catalysts. J Am Chem Soc 125:5600–5601CrossRef
50.
go back to reference Li X, Hou M, Zhang Z, Han B, Yang G, Wang X, Zou L (2008) Absorption of CO2 by ionic liquid/polyethylene glycol mixture and the thermodynamic parameters. Green Chem 10:879–884CrossRef Li X, Hou M, Zhang Z, Han B, Yang G, Wang X, Zou L (2008) Absorption of CO2 by ionic liquid/polyethylene glycol mixture and the thermodynamic parameters. Green Chem 10:879–884CrossRef
51.
go back to reference Tanthana J, Chuang SSC (2010) In situ infrared study of the role of peg in stabilizing silica-supported amines for CO2 capture. ChemSusChem 3:957–964CrossRef Tanthana J, Chuang SSC (2010) In situ infrared study of the role of peg in stabilizing silica-supported amines for CO2 capture. ChemSusChem 3:957–964CrossRef
52.
go back to reference Yang Z-Z, He L-N, Zhao Y-N, Li B, Yu B (2011) CO2 capture and activation by superbase/polyethylene glycol and its subsequent conversion. Energy Environ Sci 4:3971–3975CrossRef Yang Z-Z, He L-N, Zhao Y-N, Li B, Yu B (2011) CO2 capture and activation by superbase/polyethylene glycol and its subsequent conversion. Energy Environ Sci 4:3971–3975CrossRef
53.
go back to reference Furusho Y, Endo T (2013) Capture and release of CO2 by polyamidine. J Polym Sci, Part A: Polym Chem 51:3404–3411CrossRef Furusho Y, Endo T (2013) Capture and release of CO2 by polyamidine. J Polym Sci, Part A: Polym Chem 51:3404–3411CrossRef
54.
go back to reference Sakuragi M, Aoyagi N, Furusho Y, Endo T (2014) Reversible fixation and release of carbon dioxide by binary system consisting of polyethylene glycol and polystyrene-bearing cyclic amidine pendant group. J Polym Sci, Part A: Polym Chem 52:2025–2031CrossRef Sakuragi M, Aoyagi N, Furusho Y, Endo T (2014) Reversible fixation and release of carbon dioxide by binary system consisting of polyethylene glycol and polystyrene-bearing cyclic amidine pendant group. J Polym Sci, Part A: Polym Chem 52:2025–2031CrossRef
55.
go back to reference Jin R-H, Yuan J-J (2009) Biomimetically controlled formation of nanotextured silica/titania films on arbitrary substrates and their tunable surface function. Adv Mater 21:3750–3753CrossRef Jin R-H, Yuan J-J (2009) Biomimetically controlled formation of nanotextured silica/titania films on arbitrary substrates and their tunable surface function. Adv Mater 21:3750–3753CrossRef
56.
go back to reference Matsukizono H, Jin R-H (2012) High-temperature-resistant chiral silica generated on chiral crystalline templates at neutral ph and ambient conditions. Angew Chem Int Ed 51:5862–5865CrossRef Matsukizono H, Jin R-H (2012) High-temperature-resistant chiral silica generated on chiral crystalline templates at neutral ph and ambient conditions. Angew Chem Int Ed 51:5862–5865CrossRef
57.
go back to reference Pirrung FOH, Loen EM, Noordam A (2002) Hyperbranched polymers as a novel class of pigment dispersants. Macromol Symp 187:683–693CrossRef Pirrung FOH, Loen EM, Noordam A (2002) Hyperbranched polymers as a novel class of pigment dispersants. Macromol Symp 187:683–693CrossRef
58.
go back to reference Thunemann AF (2002) Polyelectrolyte-surfactant complexes (synthesis, structure and materials aspects). Prog Polym Sci 27:1473–1572CrossRef Thunemann AF (2002) Polyelectrolyte-surfactant complexes (synthesis, structure and materials aspects). Prog Polym Sci 27:1473–1572CrossRef
59.
go back to reference Böhme F, Klinger C, Komber H, Haubler L, Jehnichen D (1998) Synthesis and properties of polyamidines. J Polym Sci, Part A: Polym Chem 36:929–938CrossRef Böhme F, Klinger C, Komber H, Haubler L, Jehnichen D (1998) Synthesis and properties of polyamidines. J Polym Sci, Part A: Polym Chem 36:929–938CrossRef
60.
go back to reference Böhme F, Klinger C, Bellmann C (2001) Surface properties of polyamidines. Colloids Surf A 189:21–27CrossRef Böhme F, Klinger C, Bellmann C (2001) Surface properties of polyamidines. Colloids Surf A 189:21–27CrossRef
61.
go back to reference Tenkovtsev AV, Yakimansky AV, Dudkina MM, Lukoshkin VV, Komber H, Häussler L, Böhme F (2001) Ionic complexes of bis(hydroxyarylidene)alkanones with strong polymeric bases as a new class of third-order nonlinear optical chromophores. Macromolecules 34:7100–7107CrossRef Tenkovtsev AV, Yakimansky AV, Dudkina MM, Lukoshkin VV, Komber H, Häussler L, Böhme F (2001) Ionic complexes of bis(hydroxyarylidene)alkanones with strong polymeric bases as a new class of third-order nonlinear optical chromophores. Macromolecules 34:7100–7107CrossRef
62.
go back to reference Sharavanan K, Komber H, Böhme F (2002) Synthesis and properties of aliphatic polyacetamidines. Macromol Chem Phys 203:1852–1858CrossRef Sharavanan K, Komber H, Böhme F (2002) Synthesis and properties of aliphatic polyacetamidines. Macromol Chem Phys 203:1852–1858CrossRef
63.
go back to reference Xu F, Sun J, Shen Q (2002) Samarium diiodide promoted synthesis of N, N’-disubstituted amidines. Tetrahedron Lett 43:1867–1869CrossRef Xu F, Sun J, Shen Q (2002) Samarium diiodide promoted synthesis of N, N’-disubstituted amidines. Tetrahedron Lett 43:1867–1869CrossRef
64.
go back to reference The pKa values reported for N,N′-diethylacetamidine and N,N′-diethylbenzamidine in aqueous solutions are 13.08 and 12.49, respectively (By calculations using Advance Chemistry Development (ACD/Laboratories) Software (v11.02, SciFinder database)) The pKa values reported for N,N′-diethylacetamidine and N,N′-diethylbenzamidine in aqueous solutions are 13.08 and 12.49, respectively (By calculations using Advance Chemistry Development (ACD/Laboratories) Software (v11.02, SciFinder database))
65.
go back to reference Tanaka Y, Katagiri H, Furusho Y, Yashima E (2005) A modular strategy to artificial double helices. Angew Chem Int Ed 44:3867–3870CrossRef Tanaka Y, Katagiri H, Furusho Y, Yashima E (2005) A modular strategy to artificial double helices. Angew Chem Int Ed 44:3867–3870CrossRef
66.
go back to reference Ikeda M, Furusho Y, Okoshi K, Tanahara S, Maeda K, Nishino S, Mori T, Yashima E (2006) A luminescent poly(phenylenevinylene)-amylose composite with supramolecular liquid crystallinity. Angew Chem Int Ed 45:6491–6495CrossRef Ikeda M, Furusho Y, Okoshi K, Tanahara S, Maeda K, Nishino S, Mori T, Yashima E (2006) A luminescent poly(phenylenevinylene)-amylose composite with supramolecular liquid crystallinity. Angew Chem Int Ed 45:6491–6495CrossRef
67.
go back to reference Katagiri H, Tanaka Y, Furusho Y, Yashima E (2007) Multicomponent cylindrical assemblies driven by amidinium-carboxylate salt-bridge formation. Angew Chem Int Ed 46:2435–2439CrossRef Katagiri H, Tanaka Y, Furusho Y, Yashima E (2007) Multicomponent cylindrical assemblies driven by amidinium-carboxylate salt-bridge formation. Angew Chem Int Ed 46:2435–2439CrossRef
68.
go back to reference Nakatani Y, Furusho Y, Yashima E (2010) Amidinium carboxylate salt bridges as a recognition motif for mechanically interlocked molecules: synthesis of an optically active [2]catenane and control of its structure. Angew Chem Int Ed 49:5463–5467CrossRef Nakatani Y, Furusho Y, Yashima E (2010) Amidinium carboxylate salt bridges as a recognition motif for mechanically interlocked molecules: synthesis of an optically active [2]catenane and control of its structure. Angew Chem Int Ed 49:5463–5467CrossRef
69.
go back to reference Yamada H, Wu Z-Q, Furusho Y, Yashima E (2012) Thermodynamic and kinetic stabilities of complementary double helices utilizing amidinium, äìcarboxylate salt bridges. J Am Chem Soc 134:9506–9520CrossRef Yamada H, Wu Z-Q, Furusho Y, Yashima E (2012) Thermodynamic and kinetic stabilities of complementary double helices utilizing amidinium, äìcarboxylate salt bridges. J Am Chem Soc 134:9506–9520CrossRef
70.
go back to reference Furusho Y, Endo T (2014) Supramolecular polymer gels formed from carboxy-terminated telechelic polybutadiene and polyamidine through amidinium-carboxylate salt bridge. J Polym Sci, Part A: Polym Chem 52:1815–1824CrossRef Furusho Y, Endo T (2014) Supramolecular polymer gels formed from carboxy-terminated telechelic polybutadiene and polyamidine through amidinium-carboxylate salt bridge. J Polym Sci, Part A: Polym Chem 52:1815–1824CrossRef
71.
go back to reference Sakuragi M, Aoyagi N, Furusho Y, Endo T (2016) Supramolecular polymer gels from polystyrene bearing cyclic amidine group and acrylic acid/n-butyl acrylate copolymers. J Polym Sci, Part A: Polym Chem 54:765–770CrossRef Sakuragi M, Aoyagi N, Furusho Y, Endo T (2016) Supramolecular polymer gels from polystyrene bearing cyclic amidine group and acrylic acid/n-butyl acrylate copolymers. J Polym Sci, Part A: Polym Chem 54:765–770CrossRef
72.
go back to reference Furusho Y, Endo T, Higaki K, Kaetsu K, Higaki Y, Kojio K, Takahara A (2016) Supramolecular network polymers formed from polyamidine and carboxy-terminated telechelic poly(n-butyl acrylate) via amidinium-carboxylate salt bridges. J Polym Sci, Part A: Polym Chem 54:2148–2155CrossRef Furusho Y, Endo T, Higaki K, Kaetsu K, Higaki Y, Kojio K, Takahara A (2016) Supramolecular network polymers formed from polyamidine and carboxy-terminated telechelic poly(n-butyl acrylate) via amidinium-carboxylate salt bridges. J Polym Sci, Part A: Polym Chem 54:2148–2155CrossRef
Metadata
Title
Reversible capture and release of carbon dioxide by binary system of polyamidine and polyethylene glycol
Authors
Yoshio Furusho
Takeshi Endo
Publication date
04-08-2016
Publisher
Springer Berlin Heidelberg
Published in
Polymer Bulletin / Issue 4/2017
Print ISSN: 0170-0839
Electronic ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-016-1772-6

Other articles of this Issue 4/2017

Polymer Bulletin 4/2017 Go to the issue

Premium Partners