Skip to main content
Top
Published in: Journal of Sol-Gel Science and Technology 3/2016

01-03-2016 | Review Paper: Sol-gel and hybrid materials for biological and health (medical) applications

Review of aerogel-based materials in biomedical applications

Authors: Janja Stergar, Uroš Maver

Published in: Journal of Sol-Gel Science and Technology | Issue 3/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Due to their many excellent properties, aerogels attract much interest in various applications, ranging from construction to medicine. Over the last decades, their potential was practically exploited only in non-medical fields of use, although many aerogel materials, either organic, inorganic or hybrid, were proven biocompatible. Some aerogel compositions have been patented at the verge of the millennium, but the clinical use of aerogels remains very limited. This review intends to shed some more light in regard to their potential in biomedical applications as can be deduced from the more recent progressive research of their capabilities in regard to different compositions. The review covers many recent studies, but includes older research that significantly affected the development of aerogel-based materials over the years, as well. After a short introduction, covering the common aerogel properties and their possible classification options, the review is structured based on their different possible biomedical applications. Finally, it focuses on the potential of aerogels in regenerative medicine.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Fricke J, Tillotson T (1997) Aerogels: production, characterization, and applications. Thin Solid Films 297(1–2):212–223CrossRef Fricke J, Tillotson T (1997) Aerogels: production, characterization, and applications. Thin Solid Films 297(1–2):212–223CrossRef
2.
go back to reference Akimov YK (2003) Fields of application of aerogels (review). Instrum Exp Technol 46(3):287–299CrossRef Akimov YK (2003) Fields of application of aerogels (review). Instrum Exp Technol 46(3):287–299CrossRef
3.
go back to reference Yin W, Rubenstein D (2011) Biomedical applications of aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Advances in sol–gel derived materials and technologies. Springer, New York, pp 683–694 Yin W, Rubenstein D (2011) Biomedical applications of aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Advances in sol–gel derived materials and technologies. Springer, New York, pp 683–694
5.
go back to reference Hrubesh LW (1998) Aerogel applications. J Non-Cryst Solids 225(1–3):335–342CrossRef Hrubesh LW (1998) Aerogel applications. J Non-Cryst Solids 225(1–3):335–342CrossRef
6.
go back to reference Husing N, Schubert U (1998) Aerogels airy materials: chemistry, structure, and properties. Angew Chem Int Edit 37(1–2):23–45 Husing N, Schubert U (1998) Aerogels airy materials: chemistry, structure, and properties. Angew Chem Int Edit 37(1–2):23–45
7.
go back to reference Rajendar RM, Michael AM, Vasudha S, Bano S, Raj RR, Subhas CK, Mark AM (2015) Silk fibroin aerogels: potential scaffolds for tissue engineering applications. Biomed Mater 10(3):035002CrossRef Rajendar RM, Michael AM, Vasudha S, Bano S, Raj RR, Subhas CK, Mark AM (2015) Silk fibroin aerogels: potential scaffolds for tissue engineering applications. Biomed Mater 10(3):035002CrossRef
8.
go back to reference García-González CA, Jin M, Gerth J, Alvarez-Lorenzo C, Smirnova I (2015) Polysaccharide-based aerogel microspheres for oral drug delivery. Carbohyd Polym 117:797–806CrossRef García-González CA, Jin M, Gerth J, Alvarez-Lorenzo C, Smirnova I (2015) Polysaccharide-based aerogel microspheres for oral drug delivery. Carbohyd Polym 117:797–806CrossRef
9.
go back to reference Quraishi S, Martins M, Barros AA, Gurikov P, Raman SP, Smirnova I, Duarte ARC, Reis RL (2015) Novel non-cytotoxic alginate–lignin hybrid aerogels as scaffolds for tissue engineering. J Supercrit Fluids 105:1–8CrossRef Quraishi S, Martins M, Barros AA, Gurikov P, Raman SP, Smirnova I, Duarte ARC, Reis RL (2015) Novel non-cytotoxic alginate–lignin hybrid aerogels as scaffolds for tissue engineering. J Supercrit Fluids 105:1–8CrossRef
10.
go back to reference Sun YR, Yang MX, Yu F, Chen JH, Ma J (2015) Synthesis of graphene aerogel adsorbents and their applications in water treatment. Prog Chem 27(8):1133–1146 Sun YR, Yang MX, Yu F, Chen JH, Ma J (2015) Synthesis of graphene aerogel adsorbents and their applications in water treatment. Prog Chem 27(8):1133–1146
11.
go back to reference Gao T, Jelle BP, Gustavsen A, He JY (2015) Synthesis and characterization of aerogel glass materials for window glazing applications. Adv Bioceram Porous Ceram Vii:140–149 Gao T, Jelle BP, Gustavsen A, He JY (2015) Synthesis and characterization of aerogel glass materials for window glazing applications. Adv Bioceram Porous Ceram Vii:140–149
12.
go back to reference Rudaz C, Courson R, Bonnet L, Calas-Etienne S, Sallee H, Budtova T (2014) Aeropectin: fully biomass-based mechanically strong and thermal superinsulating aerogel. Biomacromolecules 15(6):2188–2195CrossRef Rudaz C, Courson R, Bonnet L, Calas-Etienne S, Sallee H, Budtova T (2014) Aeropectin: fully biomass-based mechanically strong and thermal superinsulating aerogel. Biomacromolecules 15(6):2188–2195CrossRef
13.
go back to reference Veronovski A, Tkalec G, Knez Z, Novak Z (2014) Characterisation of biodegradable pectin aerogels and their potential use as drug carriers. Carbohyd Polym 113:272–278CrossRef Veronovski A, Tkalec G, Knez Z, Novak Z (2014) Characterisation of biodegradable pectin aerogels and their potential use as drug carriers. Carbohyd Polym 113:272–278CrossRef
14.
go back to reference Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102(11):4243–4266CrossRef Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102(11):4243–4266CrossRef
15.
go back to reference Barnyakov AY, Barnyakov MY, Bobrovnikov VS, Buzykaev AR, Gulevich VV, Danilyuk AF, Katcin AA, Kononov SA, Kravchenko EA, Kuyanov IA, Onuchin AP, Ovtin IV, Rodyakin VA (2014) Threshold aerogel Cherenkov counters of the KEDR detector. J Instrum 9:C09005CrossRef Barnyakov AY, Barnyakov MY, Bobrovnikov VS, Buzykaev AR, Gulevich VV, Danilyuk AF, Katcin AA, Kononov SA, Kravchenko EA, Kuyanov IA, Onuchin AP, Ovtin IV, Rodyakin VA (2014) Threshold aerogel Cherenkov counters of the KEDR detector. J Instrum 9:C09005CrossRef
16.
go back to reference Tonguc BT, Citci S (2014) Aerogel efficiencies of threshold Cherenkov counters. Arab J Sci Eng 39(7):5739–5743CrossRef Tonguc BT, Citci S (2014) Aerogel efficiencies of threshold Cherenkov counters. Arab J Sci Eng 39(7):5739–5743CrossRef
17.
go back to reference Sabri F, Marchetta JG, Rifat Faysal KM, Brock A, Roan E (2014) Effect of aerogel particle concentration on mechanical behavior of impregnated RTV 655 compound material for aerospace applications. Adv Mater Sci Eng. doi:10.1155/2014/716356 Sabri F, Marchetta JG, Rifat Faysal KM, Brock A, Roan E (2014) Effect of aerogel particle concentration on mechanical behavior of impregnated RTV 655 compound material for aerospace applications. Adv Mater Sci Eng. doi:10.​1155/​2014/​716356
18.
go back to reference Randall JP, Meador MAB, Jana SC (2011) Tailoring mechanical properties of aerogels for aerospace applications. ACS Appl Mater Inter 3(3):613–626CrossRef Randall JP, Meador MAB, Jana SC (2011) Tailoring mechanical properties of aerogels for aerospace applications. ACS Appl Mater Inter 3(3):613–626CrossRef
19.
go back to reference Zhang XX, Wei GS, Yu F (2005) Influence of some parameters on effective thermal conductivity of nano-porous aerogel super insulator. In: HT2005: proceedings of the ASME summer heat transfer conference 2005, vol 1 pp 7–12 Zhang XX, Wei GS, Yu F (2005) Influence of some parameters on effective thermal conductivity of nano-porous aerogel super insulator. In: HT2005: proceedings of the ASME summer heat transfer conference 2005, vol 1 pp 7–12
20.
go back to reference Venkataraman M, Mishra R, Arumugam V, Jamshaid H, Militky J (2015) Acoustic properties of aerogel embedded nonwoven fabrics. In: 6th International conference on Nanocon 2014, pp 24–130 Venkataraman M, Mishra R, Arumugam V, Jamshaid H, Militky J (2015) Acoustic properties of aerogel embedded nonwoven fabrics. In: 6th International conference on Nanocon 2014, pp 24–130
21.
go back to reference Buratti C, Moretti E, Belloni E, Agosti F (2014) Development of innovative aerogel based plasters: preliminary thermal and acoustic performance evaluation. Sustain Basel 6(9):5839–5852CrossRef Buratti C, Moretti E, Belloni E, Agosti F (2014) Development of innovative aerogel based plasters: preliminary thermal and acoustic performance evaluation. Sustain Basel 6(9):5839–5852CrossRef
22.
go back to reference Wang JC, Shen J, Ni XY, Wang B, Wang XD, Li J (2010) Acoustic properties of nanoporous silica aerogel. Rare Metal Mater Eng 39:14–17 Wang JC, Shen J, Ni XY, Wang B, Wang XD, Li J (2010) Acoustic properties of nanoporous silica aerogel. Rare Metal Mater Eng 39:14–17
24.
go back to reference Julio MD, Ilharco LM (2014) Superhydrophobic hybrid aerogel powders from waterglass with distinctive applications. Microporous Mesoporous Mater 199:29–39CrossRef Julio MD, Ilharco LM (2014) Superhydrophobic hybrid aerogel powders from waterglass with distinctive applications. Microporous Mesoporous Mater 199:29–39CrossRef
25.
go back to reference Veres P, Lopez-Periago AM, Lazar I, Saurina J, Domingo C (2015) Hybrid aerogel preparations as drug delivery matrices for low water-solubility drugs. Int J Pharm 496(2):360–370CrossRef Veres P, Lopez-Periago AM, Lazar I, Saurina J, Domingo C (2015) Hybrid aerogel preparations as drug delivery matrices for low water-solubility drugs. Int J Pharm 496(2):360–370CrossRef
26.
go back to reference Gaudio PD, Auriemma G, Mencherini T, Porta GD, Reverchon E, Aquino RP (2013) Design of alginate-based aerogel for nonsteroidal anti-inflammatory drugs controlled delivery systems using prilling and supercritical-assisted drying. J Pharm Sci 102(1):185–194CrossRef Gaudio PD, Auriemma G, Mencherini T, Porta GD, Reverchon E, Aquino RP (2013) Design of alginate-based aerogel for nonsteroidal anti-inflammatory drugs controlled delivery systems using prilling and supercritical-assisted drying. J Pharm Sci 102(1):185–194CrossRef
27.
go back to reference Garcia-Gonzalez CA, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels-promising biodegradable carriers for drug delivery systems. Carbohyd Polym 86(4):1425–1438CrossRef Garcia-Gonzalez CA, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels-promising biodegradable carriers for drug delivery systems. Carbohyd Polym 86(4):1425–1438CrossRef
28.
go back to reference Ulker Z, Erkey C (2014) An emerging platform for drug delivery: aerogel based systems. J Control Release 177:51–63CrossRef Ulker Z, Erkey C (2014) An emerging platform for drug delivery: aerogel based systems. J Control Release 177:51–63CrossRef
29.
go back to reference Mikkonen KS, Parikka K, Ghafar A, Tenkanen M (2013) Prospects of polysaccharide aerogels as modern advanced food materials. Trends Food Sci Technol 34(2):124–136CrossRef Mikkonen KS, Parikka K, Ghafar A, Tenkanen M (2013) Prospects of polysaccharide aerogels as modern advanced food materials. Trends Food Sci Technol 34(2):124–136CrossRef
30.
go back to reference Power M, Hosticka B, Black E, Daitch C, Norris P (2001) Aerogels as biosensors: viral particle detection by bacteria immobilized on large pore aerogel. J Non-Cryst Solids 285(1–3):303–308CrossRef Power M, Hosticka B, Black E, Daitch C, Norris P (2001) Aerogels as biosensors: viral particle detection by bacteria immobilized on large pore aerogel. J Non-Cryst Solids 285(1–3):303–308CrossRef
31.
go back to reference Fang LX, Huang KJ, Liu Y (2015) Novel electrochemical dual-aptamer-based sandwich biosensor using molybdenum disulfide/carbon aerogel composites and Au nanoparticles for signal amplification. Biosens Bioelectron 71:171–178CrossRef Fang LX, Huang KJ, Liu Y (2015) Novel electrochemical dual-aptamer-based sandwich biosensor using molybdenum disulfide/carbon aerogel composites and Au nanoparticles for signal amplification. Biosens Bioelectron 71:171–178CrossRef
32.
go back to reference Peng L, Dong SY, Li N, Suo GC, Huang TL (2015) Construction of a biocompatible system of hemoglobin based on AuNPs–carbon aerogel and ionic liquid for amperometric biosensor. Sens Actuat B Chem 210:418–424CrossRef Peng L, Dong SY, Li N, Suo GC, Huang TL (2015) Construction of a biocompatible system of hemoglobin based on AuNPs–carbon aerogel and ionic liquid for amperometric biosensor. Sens Actuat B Chem 210:418–424CrossRef
33.
go back to reference Sun QQ, Xu MW, Bao SJ, Li CM (2015) pH-controllable synthesis of unique nanostructured tungsten oxide aerogel and its sensitive glucose biosensor. Nanotechnology 26(11):115602CrossRef Sun QQ, Xu MW, Bao SJ, Li CM (2015) pH-controllable synthesis of unique nanostructured tungsten oxide aerogel and its sensitive glucose biosensor. Nanotechnology 26(11):115602CrossRef
34.
go back to reference Zhang Y, Nypelö T, Salas C, Arboleda J, Hoeger IC, Rojas OJ (2013) Cellulose nanofibrils. J Renew Mater 1(3):195–211CrossRef Zhang Y, Nypelö T, Salas C, Arboleda J, Hoeger IC, Rojas OJ (2013) Cellulose nanofibrils. J Renew Mater 1(3):195–211CrossRef
35.
go back to reference Ren W, Cheng H-M (2013) Materials science: when two is better than one. Nature 497(7450):448–449CrossRef Ren W, Cheng H-M (2013) Materials science: when two is better than one. Nature 497(7450):448–449CrossRef
36.
go back to reference Ul-Islam M, Khan S, Ullah MW, Park JK (2015) Bacterial cellulose composites: Synthetic strategies and multiple applications in bio-medical and electro-conductive fields. Biotechnol J 10(12):1847–1861CrossRef Ul-Islam M, Khan S, Ullah MW, Park JK (2015) Bacterial cellulose composites: Synthetic strategies and multiple applications in bio-medical and electro-conductive fields. Biotechnol J 10(12):1847–1861CrossRef
37.
go back to reference Saboktakin A, Saboktakin MR (2015) Improvements of reinforced silica aerogel nanocomposites thermal properties for architecture applications. Int J Biol Macromol 72:230–234CrossRef Saboktakin A, Saboktakin MR (2015) Improvements of reinforced silica aerogel nanocomposites thermal properties for architecture applications. Int J Biol Macromol 72:230–234CrossRef
38.
go back to reference Du A, Zhou B, Zhang ZH, Shen J (2013) A special material or a new state of matter: a review and reconsideration of the aerogel. Materials 6(3):941–968CrossRef Du A, Zhou B, Zhang ZH, Shen J (2013) A special material or a new state of matter: a review and reconsideration of the aerogel. Materials 6(3):941–968CrossRef
39.
go back to reference Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, Boston Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, Boston
40.
go back to reference Cuce E, Cuce PM, Wood CJ, Riffat SB (2014) Toward aerogel based thermal superinsulation in buildings: a comprehensive review. Renew Sustain Energ Rev 34:273–299CrossRef Cuce E, Cuce PM, Wood CJ, Riffat SB (2014) Toward aerogel based thermal superinsulation in buildings: a comprehensive review. Renew Sustain Energ Rev 34:273–299CrossRef
41.
go back to reference Riffat SB, Qiu G (2013) A review of state-of-the-art aerogel applications in buildings. Int J Low Carbon Technol 8(1):1–6CrossRef Riffat SB, Qiu G (2013) A review of state-of-the-art aerogel applications in buildings. Int J Low Carbon Technol 8(1):1–6CrossRef
42.
go back to reference Koebel M, Rigacci A, Achard P (2012) Aerogel-based thermal superinsulation: an overview. J Sol–Gel Sci Technol 63(3):315–339CrossRef Koebel M, Rigacci A, Achard P (2012) Aerogel-based thermal superinsulation: an overview. J Sol–Gel Sci Technol 63(3):315–339CrossRef
43.
go back to reference Qi ZK, Huang DM, He S, Yang H, Hu Y, Li LM, Zhang HP (2013) Thermal protective performance of aerogel embedded firefighter’s protective clothing. J Eng Fibers Fabr 8(2):134–139 Qi ZK, Huang DM, He S, Yang H, Hu Y, Li LM, Zhang HP (2013) Thermal protective performance of aerogel embedded firefighter’s protective clothing. J Eng Fibers Fabr 8(2):134–139
44.
go back to reference Shaid A, Furgusson M, Wang L (2014) Thermophysiological comfort analysis of aerogel nanoparticle incorporated fabric for fire fighter’s protective clothing. Chem Mater Eng 2(2):37–43 Shaid A, Furgusson M, Wang L (2014) Thermophysiological comfort analysis of aerogel nanoparticle incorporated fabric for fire fighter’s protective clothing. Chem Mater Eng 2(2):37–43
45.
go back to reference Hair LM, Pekala RW, Stone RE, Chen C, Buckley SR (1988) Low-density resorcinol formaldehyde aerogels for direct-drive laser inertial confinement fusion-targets. J Vac Sci Technol A 6(4):2559–2563CrossRef Hair LM, Pekala RW, Stone RE, Chen C, Buckley SR (1988) Low-density resorcinol formaldehyde aerogels for direct-drive laser inertial confinement fusion-targets. J Vac Sci Technol A 6(4):2559–2563CrossRef
46.
go back to reference Li N, Zhang Q, Liu J, Joo J, Lee A, Gan Y, Yin Y (2013) Sol–gel coating of inorganic nanostructures with resorcinol–formaldehyde resin. Chem Commun (Camb) 49(45):5135–5137CrossRef Li N, Zhang Q, Liu J, Joo J, Lee A, Gan Y, Yin Y (2013) Sol–gel coating of inorganic nanostructures with resorcinol–formaldehyde resin. Chem Commun (Camb) 49(45):5135–5137CrossRef
47.
go back to reference Mulik S, Sotiriou-Leventis C (2011) Resorcinol–formaldehyde aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Advances in sol–gel derived materials and technologies. Springer, New York, pp 215–234 Mulik S, Sotiriou-Leventis C (2011) Resorcinol–formaldehyde aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Advances in sol–gel derived materials and technologies. Springer, New York, pp 215–234
48.
go back to reference Welsch F (2008) Routes and modes of administration of resorcinol and their relationship to potential manifestations of thyroid gland toxicity in animals and man. Int J Toxicol 27(1):59–63CrossRef Welsch F (2008) Routes and modes of administration of resorcinol and their relationship to potential manifestations of thyroid gland toxicity in animals and man. Int J Toxicol 27(1):59–63CrossRef
49.
go back to reference Welsch F, Nemec MD, Lawrence WB (2008) Two-generation reproductive toxicity study of resorcinol administered via drinking water to Crl:CD(SD) Rats. Int J Toxicol 27(1):43–57CrossRef Welsch F, Nemec MD, Lawrence WB (2008) Two-generation reproductive toxicity study of resorcinol administered via drinking water to Crl:CD(SD) Rats. Int J Toxicol 27(1):43–57CrossRef
50.
go back to reference Wang XL, Ben Ahmed N, Alvarez GS, Tuttolomondo MV, Helary C, Desimone MF, Coradin T (2015) Sol–gel encapsulation of biomolecules and cells for medicinal applications. Curr Top Med Chem 15(3):223–244CrossRef Wang XL, Ben Ahmed N, Alvarez GS, Tuttolomondo MV, Helary C, Desimone MF, Coradin T (2015) Sol–gel encapsulation of biomolecules and cells for medicinal applications. Curr Top Med Chem 15(3):223–244CrossRef
51.
go back to reference Li G, Zhu T, Deng Z, Zhang Y, Jiao F, Zheng H (2011) Preparation of Cu–SiO2 composite aerogel by ambient drying and the influence of synthesizing conditions on the structure of the aerogel. Chin Sci Bull 56(7):685–690CrossRef Li G, Zhu T, Deng Z, Zhang Y, Jiao F, Zheng H (2011) Preparation of Cu–SiO2 composite aerogel by ambient drying and the influence of synthesizing conditions on the structure of the aerogel. Chin Sci Bull 56(7):685–690CrossRef
52.
go back to reference Hair LM, Coronado PR, Reynolds JG (2000) Mixed-metal oxide aerogels for oxidation of volatile organic compounds. J Non-Cryst Solids 270(1–3):115–122CrossRef Hair LM, Coronado PR, Reynolds JG (2000) Mixed-metal oxide aerogels for oxidation of volatile organic compounds. J Non-Cryst Solids 270(1–3):115–122CrossRef
53.
go back to reference Giray S, Bal T, Kartal AM, Kizilel S, Erkey C (2012) Controlled drug delivery through a novel PEG hydrogel encapsulated silica aerogel system. J Biomed Mater Res A 100(5):1307–1315CrossRef Giray S, Bal T, Kartal AM, Kizilel S, Erkey C (2012) Controlled drug delivery through a novel PEG hydrogel encapsulated silica aerogel system. J Biomed Mater Res A 100(5):1307–1315CrossRef
54.
go back to reference Buisson P, Hernandez C, Pierre M, Pierre AC (2001) Encapsulation of lipases in aerogels. J Non-Cryst Solids 285(1–3):295–302CrossRef Buisson P, Hernandez C, Pierre M, Pierre AC (2001) Encapsulation of lipases in aerogels. J Non-Cryst Solids 285(1–3):295–302CrossRef
55.
go back to reference Guenther U, Smirnova I, Neubert RHH (2008) Hydrophilic silica aerogels as dermal drug delivery systems—dithranol as a model drug. Eur J Pharm Biopharm 69(3):935–942CrossRef Guenther U, Smirnova I, Neubert RHH (2008) Hydrophilic silica aerogels as dermal drug delivery systems—dithranol as a model drug. Eur J Pharm Biopharm 69(3):935–942CrossRef
56.
go back to reference Mehling T, Smirnova I, Guenther U, Neubert RHH (2009) Polysaccharide-based aerogels as drug carriers. J Non-Cryst Solids 355(50–51):2472–2479CrossRef Mehling T, Smirnova I, Guenther U, Neubert RHH (2009) Polysaccharide-based aerogels as drug carriers. J Non-Cryst Solids 355(50–51):2472–2479CrossRef
57.
go back to reference Zhao S, Manic MS, Ruiz-Gonzalez F, Koebel MM (2015) Aerogels. In: Levy D, Zayat M (eds) The sol–gel handbook: synthesis, characterization and applications, 3-volume set. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 519–574CrossRef Zhao S, Manic MS, Ruiz-Gonzalez F, Koebel MM (2015) Aerogels. In: Levy D, Zayat M (eds) The sol–gel handbook: synthesis, characterization and applications, 3-volume set. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 519–574CrossRef
58.
go back to reference Smirnova I (2011) Pharmaceutical applications of aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Advances in sol–gel derived materials and technologies. Springer, New York, pp 695–717 Smirnova I (2011) Pharmaceutical applications of aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Advances in sol–gel derived materials and technologies. Springer, New York, pp 695–717
59.
go back to reference Smirnova I, Suttiruengwong S, Arlt W (2004) Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems. J Non-Cryst Solids 350:54–60CrossRef Smirnova I, Suttiruengwong S, Arlt W (2004) Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems. J Non-Cryst Solids 350:54–60CrossRef
60.
go back to reference Horikawa T, Hayashi J, Muroyama K (2004) Size control and characterization of spherical carbon aerogel particles from resorcinol–formaldehyde resin. Carbon 42(1):169–175CrossRef Horikawa T, Hayashi J, Muroyama K (2004) Size control and characterization of spherical carbon aerogel particles from resorcinol–formaldehyde resin. Carbon 42(1):169–175CrossRef
61.
go back to reference Nishinari K, Takahashi R (2003) Interaction in polysaccharide solutions and gels. Curr Opin Colloid Interface 8(4–5):396–400CrossRef Nishinari K, Takahashi R (2003) Interaction in polysaccharide solutions and gels. Curr Opin Colloid Interface 8(4–5):396–400CrossRef
62.
go back to reference Malafaya PB, Silva GA, Reis RL (2007) Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59(4–5):207–233CrossRef Malafaya PB, Silva GA, Reis RL (2007) Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59(4–5):207–233CrossRef
63.
go back to reference Su C-W, Chen S-Y, Liu D-M (2013) ***Polysaccharide-lecithin reverse micelles with enzyme-degradable triglyceride shell for overcoming tumor multidrug resistance. Chem Commun 49(36):3772–3774CrossRef Su C-W, Chen S-Y, Liu D-M (2013) ***Polysaccharide-lecithin reverse micelles with enzyme-degradable triglyceride shell for overcoming tumor multidrug resistance. Chem Commun 49(36):3772–3774CrossRef
64.
go back to reference Kamath KR, Park K (1993) Biodegradable hydrogels in drug delivery. Adv Drug Deliv Rev 11(1–2):59–84CrossRef Kamath KR, Park K (1993) Biodegradable hydrogels in drug delivery. Adv Drug Deliv Rev 11(1–2):59–84CrossRef
65.
go back to reference Valo H, Arola S, Laaksonen P, Torkkeli M, Peltonen L, Linder MB, Serimaa R, Kuga S, Hirvonen J, Laaksonen T (2013) Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur J Pharm Sci 50(1):69–77CrossRef Valo H, Arola S, Laaksonen P, Torkkeli M, Peltonen L, Linder MB, Serimaa R, Kuga S, Hirvonen J, Laaksonen T (2013) Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur J Pharm Sci 50(1):69–77CrossRef
66.
go back to reference Chang XH, Chen DR, Jiao XL (2008) Chitosan-based aerogels with high adsorption performance. J Phys Chem B 112(26):7721–7725CrossRef Chang XH, Chen DR, Jiao XL (2008) Chitosan-based aerogels with high adsorption performance. J Phys Chem B 112(26):7721–7725CrossRef
67.
go back to reference Weiser JR, Saltzman WM (2014) Controlled release for local delivery of drugs: barriers and models. J Control Release 190:664–673CrossRef Weiser JR, Saltzman WM (2014) Controlled release for local delivery of drugs: barriers and models. J Control Release 190:664–673CrossRef
68.
go back to reference Reed S, Wu B (2014) Sustained growth factor delivery in tissue engineering applications. Ann Biomed Eng 42(7):1528–1536CrossRef Reed S, Wu B (2014) Sustained growth factor delivery in tissue engineering applications. Ann Biomed Eng 42(7):1528–1536CrossRef
69.
go back to reference Maver T, Hribernik S, Mohan T, Smrke DM, Maver U, Stana-Kleinschek K (2015) Functional wound dressing materials with highly tunable drug release properties. RSC Adv 5(95):77873–77884CrossRef Maver T, Hribernik S, Mohan T, Smrke DM, Maver U, Stana-Kleinschek K (2015) Functional wound dressing materials with highly tunable drug release properties. RSC Adv 5(95):77873–77884CrossRef
70.
go back to reference Lee WL, Shi WX, Low ZY, Li SZ, Loo SCJ (2012) Modeling of drug release from biodegradable triple-layered microparticles. J Biomed Mater Res A 100A(12):3353–3362CrossRef Lee WL, Shi WX, Low ZY, Li SZ, Loo SCJ (2012) Modeling of drug release from biodegradable triple-layered microparticles. J Biomed Mater Res A 100A(12):3353–3362CrossRef
71.
go back to reference Delfour MC (2012) Drug release kinetics from biodegradable polymers via partial differential equations models. Acta Appl Math 118(1):161–183CrossRef Delfour MC (2012) Drug release kinetics from biodegradable polymers via partial differential equations models. Acta Appl Math 118(1):161–183CrossRef
72.
go back to reference Lao LL, Peppas NA, Boey FYC, Venkatraman SS (2011) Modeling of drug release from bulk-degrading polymers. Int J Pharm 418(1):28–41CrossRef Lao LL, Peppas NA, Boey FYC, Venkatraman SS (2011) Modeling of drug release from bulk-degrading polymers. Int J Pharm 418(1):28–41CrossRef
73.
go back to reference Maver U, Godec A, Bele M, Planinšek O, Gaberšček M, Srčič S, Jamnik J (2007) Novel hybrid silica xerogels for stabilization and controlled release of drug. Int J Pharm 330(1–2):164–174CrossRef Maver U, Godec A, Bele M, Planinšek O, Gaberšček M, Srčič S, Jamnik J (2007) Novel hybrid silica xerogels for stabilization and controlled release of drug. Int J Pharm 330(1–2):164–174CrossRef
74.
go back to reference Maver T, Kurečič M, Smrke DM, Kleinschek KS, Maver U (2015) Electrospun nanofibrous CMC/PEO as a part of an effective pain-relieving wound dressing. J Sol–Gel Sci Technol. doi:10.1007/s10971-015-3888-9 Maver T, Kurečič M, Smrke DM, Kleinschek KS, Maver U (2015) Electrospun nanofibrous CMC/PEO as a part of an effective pain-relieving wound dressing. J Sol–Gel Sci Technol. doi:10.​1007/​s10971-015-3888-9
75.
go back to reference García-González CA, Uy JJ, Alnaief M, Smirnova I (2012) Preparation of tailor-made starch-based aerogel microspheres by the emulsion–gelation method. Carbohyd Polym 88(4):1378–1386CrossRef García-González CA, Uy JJ, Alnaief M, Smirnova I (2012) Preparation of tailor-made starch-based aerogel microspheres by the emulsion–gelation method. Carbohyd Polym 88(4):1378–1386CrossRef
76.
go back to reference Alnaief M, Antonyuk S, Hentzschel CM, Leopold CS, Heinrich S, Smirnova I (2012) A novel process for coating of silica aerogel microspheres for controlled drug release applications. Microporous Mesoporous Mater 160:167–173CrossRef Alnaief M, Antonyuk S, Hentzschel CM, Leopold CS, Heinrich S, Smirnova I (2012) A novel process for coating of silica aerogel microspheres for controlled drug release applications. Microporous Mesoporous Mater 160:167–173CrossRef
77.
go back to reference Colilla M, Baeza A, Vallet-Regí M (2015) Mesoporous silica nanoparticles for drug delivery and controlled release applications. In: Levy D, Zayat M (eds) The sol–gel handbook: synthesis, characterization and applications, 3-volume set. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 1309–1344CrossRef Colilla M, Baeza A, Vallet-Regí M (2015) Mesoporous silica nanoparticles for drug delivery and controlled release applications. In: Levy D, Zayat M (eds) The sol–gel handbook: synthesis, characterization and applications, 3-volume set. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 1309–1344CrossRef
78.
go back to reference Maleki H, Durães L, Portugal A (2014) An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J Non-Cryst Solids 385:55–74CrossRef Maleki H, Durães L, Portugal A (2014) An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J Non-Cryst Solids 385:55–74CrossRef
79.
go back to reference Rosenholm JM, Linden M (2008) Towards establishing structure–activity relationships for mesoporous silica in drug delivery applications. J Control Release 128(2):157–164CrossRef Rosenholm JM, Linden M (2008) Towards establishing structure–activity relationships for mesoporous silica in drug delivery applications. J Control Release 128(2):157–164CrossRef
80.
go back to reference Smirnova I, Suttiruengwong S, Seiler M, Arlt W (2004) Dissolution rate enhancement by adsorption of poorly soluble drugs on hydrophilic silica aerogels. Pharm Dev Technol 9(4):443–452CrossRef Smirnova I, Suttiruengwong S, Seiler M, Arlt W (2004) Dissolution rate enhancement by adsorption of poorly soluble drugs on hydrophilic silica aerogels. Pharm Dev Technol 9(4):443–452CrossRef
81.
go back to reference Murillo-Cremaes N, Lopez-Periago AM, Saurina J, Roig A, Domingo C (2013) Nanostructured silica-based drug delivery vehicles for hydrophobic and moisture sensitive drugs. J Supercrit Fluid 73:34–42CrossRef Murillo-Cremaes N, Lopez-Periago AM, Saurina J, Roig A, Domingo C (2013) Nanostructured silica-based drug delivery vehicles for hydrophobic and moisture sensitive drugs. J Supercrit Fluid 73:34–42CrossRef
82.
go back to reference Caputo G (2013) Fixed bed adsorption of drugs on silica aerogel from supercritical carbon dioxide solutions. Int J Chem Eng 2013:7CrossRef Caputo G (2013) Fixed bed adsorption of drugs on silica aerogel from supercritical carbon dioxide solutions. Int J Chem Eng 2013:7CrossRef
83.
go back to reference Schwertfeger F, Zimmermann A, Krempel H (2001) Use of inorganic aerogels in pharmacy. Google Patents Schwertfeger F, Zimmermann A, Krempel H (2001) Use of inorganic aerogels in pharmacy. Google Patents
84.
go back to reference Godec A, Maver U, Bele M, Planinsek O, Srcic S, Gaberscek M, Jamnik J (2007) Vitrification from solution in restricted space: formation and stabilization of amorphous nifedipine in a nanoporous silica xerogel carrier. Int J Pharm 343(1–2):131–140CrossRef Godec A, Maver U, Bele M, Planinsek O, Srcic S, Gaberscek M, Jamnik J (2007) Vitrification from solution in restricted space: formation and stabilization of amorphous nifedipine in a nanoporous silica xerogel carrier. Int J Pharm 343(1–2):131–140CrossRef
85.
go back to reference Berg A, Droege MW, Fellmann JD, Klaveness J, Rongved P (1996) Medical use of organic aerogels and biodegradable organic aerogels. Google Patents Berg A, Droege MW, Fellmann JD, Klaveness J, Rongved P (1996) Medical use of organic aerogels and biodegradable organic aerogels. Google Patents
86.
go back to reference Lee KP, Gould GL (2006) Aerogel powder therapeutic agents. Google Patents Lee KP, Gould GL (2006) Aerogel powder therapeutic agents. Google Patents
87.
go back to reference Marin MA, Mallepally RR, McHugh MA (2014) Silk fibroin aerogels for drug delivery applications. J Supercrit Fluids 91:84–89CrossRef Marin MA, Mallepally RR, McHugh MA (2014) Silk fibroin aerogels for drug delivery applications. J Supercrit Fluids 91:84–89CrossRef
88.
go back to reference Betz M, Garcia-Gonzalez CA, Subrahmanyam RP, Smirnova I, Kulozik U (2012) Preparation of novel whey protein-based aerogels as drug carriers for life science applications. J Supercrit Fluid 72:111–119CrossRef Betz M, Garcia-Gonzalez CA, Subrahmanyam RP, Smirnova I, Kulozik U (2012) Preparation of novel whey protein-based aerogels as drug carriers for life science applications. J Supercrit Fluid 72:111–119CrossRef
89.
go back to reference Chiang C-Y, Chu C-C (2015) Synthesis of photoresponsive hybrid alginate hydrogel with photo-controlled release behavior. Carbohyd Polym 119:18–25CrossRef Chiang C-Y, Chu C-C (2015) Synthesis of photoresponsive hybrid alginate hydrogel with photo-controlled release behavior. Carbohyd Polym 119:18–25CrossRef
90.
go back to reference Abd El-Ghaffar MA, Hashem MS, El-Awady MK, Rabie AM (2012) pH-sensitive sodium alginate hydrogels for riboflavin controlled release. Carbohyd Polym 89(2):667–675CrossRef Abd El-Ghaffar MA, Hashem MS, El-Awady MK, Rabie AM (2012) pH-sensitive sodium alginate hydrogels for riboflavin controlled release. Carbohyd Polym 89(2):667–675CrossRef
91.
go back to reference Gombotz WR, Wee SF (2012) Protein release from alginate matrices. Adv Drug Deliv Rev 64(Supplement):194–205CrossRef Gombotz WR, Wee SF (2012) Protein release from alginate matrices. Adv Drug Deliv Rev 64(Supplement):194–205CrossRef
92.
go back to reference Garcia-Gonzalez CA, Smirnova I (2013) Use of supercritical fluid technology for the production of tailor-made aerogel particles for delivery systems. J Supercrit Fluid 79:152–158CrossRef Garcia-Gonzalez CA, Smirnova I (2013) Use of supercritical fluid technology for the production of tailor-made aerogel particles for delivery systems. J Supercrit Fluid 79:152–158CrossRef
93.
go back to reference Giray S, Bal T, Kartal AM, Kızılel S, Erkey C (2012) Controlled drug delivery through a novel PEG hydrogel encapsulated silica aerogel system. J Biomed Mater Res A 100A(5):1307–1315CrossRef Giray S, Bal T, Kartal AM, Kızılel S, Erkey C (2012) Controlled drug delivery through a novel PEG hydrogel encapsulated silica aerogel system. J Biomed Mater Res A 100A(5):1307–1315CrossRef
94.
go back to reference Wang X, Jana SC (2013) Synergistic hybrid organic–inorganic aerogels. ACS Appl Mater Interfaces 5(13):6423–6429CrossRef Wang X, Jana SC (2013) Synergistic hybrid organic–inorganic aerogels. ACS Appl Mater Interfaces 5(13):6423–6429CrossRef
95.
go back to reference Ree M, Goh WH, Kim Y (1995) Thin films of organic polymer composites with inorganic aerogels as dielectric materials: polymer chain orientation and properties. Polym Bull 35(1–2):215–222CrossRef Ree M, Goh WH, Kim Y (1995) Thin films of organic polymer composites with inorganic aerogels as dielectric materials: polymer chain orientation and properties. Polym Bull 35(1–2):215–222CrossRef
96.
go back to reference Sanli D, Ulker Z, Giray S, Kızılel S, Erkey C (2011) PEG-hydrogel coated silica aerogels: a novel drug delivery system. Paper presented at the 13th European meeting on supercritical fluids, The Hague, Netherlands Sanli D, Ulker Z, Giray S, Kızılel S, Erkey C (2011) PEG-hydrogel coated silica aerogels: a novel drug delivery system. Paper presented at the 13th European meeting on supercritical fluids, The Hague, Netherlands
97.
go back to reference Ulker Z, Erkey C (2014) A novel hybrid material: an inorganic silica aerogel core encapsulated with a tunable organic alginate aerogel layer. RSC Adv 4(107):62362–62366CrossRef Ulker Z, Erkey C (2014) A novel hybrid material: an inorganic silica aerogel core encapsulated with a tunable organic alginate aerogel layer. RSC Adv 4(107):62362–62366CrossRef
98.
go back to reference Holland SJ, Tighe BJ, Gould PL (1986) Polymers for biodegradable medical devices. 1. The potential of polyesters as controlled macromolecular release systems. J Control Release 4(3):155–180CrossRef Holland SJ, Tighe BJ, Gould PL (1986) Polymers for biodegradable medical devices. 1. The potential of polyesters as controlled macromolecular release systems. J Control Release 4(3):155–180CrossRef
99.
go back to reference Venkatraman S, Boey F, Lao LL (2008) Implanted cardiovascular polymers: natural, synthetic and bio-inspired. Prog Polym Sci 33(9):853–874CrossRef Venkatraman S, Boey F, Lao LL (2008) Implanted cardiovascular polymers: natural, synthetic and bio-inspired. Prog Polym Sci 33(9):853–874CrossRef
100.
go back to reference Claiborne TE, Slepian MJ, Hossainy S, Bluestein D (2012) Polymeric trileaflet prosthetic heart valves: evolution and path to clinical reality. Expert Rev Med Dev 9(6):577–594CrossRef Claiborne TE, Slepian MJ, Hossainy S, Bluestein D (2012) Polymeric trileaflet prosthetic heart valves: evolution and path to clinical reality. Expert Rev Med Dev 9(6):577–594CrossRef
101.
go back to reference Yang WW, Pierstorff E (2012) Reservoir-based polymer drug delivery systems. J Lab Autom 17(1):50–58CrossRef Yang WW, Pierstorff E (2012) Reservoir-based polymer drug delivery systems. J Lab Autom 17(1):50–58CrossRef
102.
go back to reference Smith IO, Liu XH, Smith LA, Ma PX (2009) Nanostructured polymer scaffolds for tissue engineering and regenerative medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(2):226–236CrossRef Smith IO, Liu XH, Smith LA, Ma PX (2009) Nanostructured polymer scaffolds for tissue engineering and regenerative medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(2):226–236CrossRef
103.
go back to reference Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar S (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 2011:19CrossRef Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar S (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 2011:19CrossRef
104.
go back to reference Mogosanu GD, Grumezescu AM (2014) Natural and synthetic polymers for wounds and burns dressing. Int J Pharm 463(2):127–136CrossRef Mogosanu GD, Grumezescu AM (2014) Natural and synthetic polymers for wounds and burns dressing. Int J Pharm 463(2):127–136CrossRef
105.
go back to reference Agrawal P, Soni S, Mittal G, Bhatnagar A (2014) Role of polymeric biomaterials as wound healing agents. Int J Lower Extrem Wounds 13(3):180–190CrossRef Agrawal P, Soni S, Mittal G, Bhatnagar A (2014) Role of polymeric biomaterials as wound healing agents. Int J Lower Extrem Wounds 13(3):180–190CrossRef
106.
go back to reference Jones JR (2015) Sol–gel materials for biomedical applications. In: Levy D, Zayat M (eds) The sol–gel handbook: synthesis, characterization and applications, 3-volume set. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 1345–1370CrossRef Jones JR (2015) Sol–gel materials for biomedical applications. In: Levy D, Zayat M (eds) The sol–gel handbook: synthesis, characterization and applications, 3-volume set. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 1345–1370CrossRef
107.
go back to reference Lee H, Homma A, Tatsumi E, Taenaka Y (2010) Observation of cavitation pits on mechanical heart valve surfaces in an artificial heart used in in vitro testing. J Artif Organs 13(1):17–23CrossRef Lee H, Homma A, Tatsumi E, Taenaka Y (2010) Observation of cavitation pits on mechanical heart valve surfaces in an artificial heart used in in vitro testing. J Artif Organs 13(1):17–23CrossRef
108.
go back to reference Claiborne TE, Bluestein D, Schoephoerster RT (2009) Development and evaluation of a novel artificial catheter-deliverable prosthetic heart valve and method for in vitro testing. Int J Artif Organs 32(5):262–271 Claiborne TE, Bluestein D, Schoephoerster RT (2009) Development and evaluation of a novel artificial catheter-deliverable prosthetic heart valve and method for in vitro testing. Int J Artif Organs 32(5):262–271
109.
go back to reference Yin W, Venkitachalam SM, Jarrett E, Staggs S, Leventis N, Lu H, Rubenstein DA (2010) Biocompatibility of surfactant-templated polyurea-nanoencapsulated macroporous silica aerogels with plasma platelets and endothelial cells. J Biomed Mater Res A 92(4):1431–1439 Yin W, Venkitachalam SM, Jarrett E, Staggs S, Leventis N, Lu H, Rubenstein DA (2010) Biocompatibility of surfactant-templated polyurea-nanoencapsulated macroporous silica aerogels with plasma platelets and endothelial cells. J Biomed Mater Res A 92(4):1431–1439
110.
go back to reference Toledo-Fernández J, Mendoza-Serna R, Morales V, de la Rosa-Fox N, Piñero M, Santos A, Esquivias L (2008) Bioactivity of wollastonite/aerogels composites obtained from a TEOS–MTES matrix. J Mater Sci Mater Med 19(5):2207–2213CrossRef Toledo-Fernández J, Mendoza-Serna R, Morales V, de la Rosa-Fox N, Piñero M, Santos A, Esquivias L (2008) Bioactivity of wollastonite/aerogels composites obtained from a TEOS–MTES matrix. J Mater Sci Mater Med 19(5):2207–2213CrossRef
111.
go back to reference Ayers MR, Hunt AJ (2001) Synthesis and properties of chitosan-silica hybrid aerogels. J Non-Cryst Solids 285(1–3):123–127CrossRef Ayers MR, Hunt AJ (2001) Synthesis and properties of chitosan-silica hybrid aerogels. J Non-Cryst Solids 285(1–3):123–127CrossRef
112.
go back to reference Cardea S, Pisanti P, Reverchon E (2010) Generation of chitosan nanoporous structures for tissue engineering applications using a supercritical fluid assisted process. J Supercrit Fluids 54(3):290–295CrossRef Cardea S, Pisanti P, Reverchon E (2010) Generation of chitosan nanoporous structures for tissue engineering applications using a supercritical fluid assisted process. J Supercrit Fluids 54(3):290–295CrossRef
113.
go back to reference Aimé C, Coradin T, Fernandes FM (2015) Biomimetic sol–gel materials. In: Levy D, Zayat M (eds) The sol–gel handbook: synthesis, characterization and applications, 3-volume set. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 605–650CrossRef Aimé C, Coradin T, Fernandes FM (2015) Biomimetic sol–gel materials. In: Levy D, Zayat M (eds) The sol–gel handbook: synthesis, characterization and applications, 3-volume set. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 605–650CrossRef
114.
go back to reference Nakanishi K (2015) Properties and applications of sol–gel materials: functionalized porous amorphous solids (monoliths). In: Levy D, Zayat M (eds) The sol–gel handbook: synthesis, characterization and applications, 3-volume set. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 745–766CrossRef Nakanishi K (2015) Properties and applications of sol–gel materials: functionalized porous amorphous solids (monoliths). In: Levy D, Zayat M (eds) The sol–gel handbook: synthesis, characterization and applications, 3-volume set. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 745–766CrossRef
115.
go back to reference Ge J, Li M, Zhang Q, Yang CZ, Wooley PH, Chen X, Yang S-Y (2013) Silica aerogel improves the biocompatibility in a poly-caprolactone composite used as a tissue engineering scaffold. Int J Polym Sci 2013:7CrossRef Ge J, Li M, Zhang Q, Yang CZ, Wooley PH, Chen X, Yang S-Y (2013) Silica aerogel improves the biocompatibility in a poly-caprolactone composite used as a tissue engineering scaffold. Int J Polym Sci 2013:7CrossRef
116.
go back to reference Jagur-Grodzinski J (2010) Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polym Adv Technol 21(1):27–47 Jagur-Grodzinski J (2010) Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polym Adv Technol 21(1):27–47
117.
go back to reference Martins M, Barros AA, Quraishi S, Gurikov P, Raman SP, Smirnova I, Duarte ARC, Reis RL (2015) Preparation of macroporous alginate-based aerogels for biomedical applications. J Supercrit Fluids 106:152–159CrossRef Martins M, Barros AA, Quraishi S, Gurikov P, Raman SP, Smirnova I, Duarte ARC, Reis RL (2015) Preparation of macroporous alginate-based aerogels for biomedical applications. J Supercrit Fluids 106:152–159CrossRef
118.
go back to reference Raman SP, Gurikov P, Smirnova I (2015) Hybrid alginate based aerogels by carbon dioxide induced gelation: novel technique for multiple applications. J Supercrit Fluids 106:23–33CrossRef Raman SP, Gurikov P, Smirnova I (2015) Hybrid alginate based aerogels by carbon dioxide induced gelation: novel technique for multiple applications. J Supercrit Fluids 106:23–33CrossRef
119.
go back to reference Rocco P, Viggiano I, Schiraldi DA (2014) Fabrication and mechanical characterization of lignin-based aerogels. Green Mater 2(3):153–158CrossRef Rocco P, Viggiano I, Schiraldi DA (2014) Fabrication and mechanical characterization of lignin-based aerogels. Green Mater 2(3):153–158CrossRef
120.
go back to reference Yu H, Wooley PH, Yang S-Y (2009) Biocompatibility of poly-ε-caprolactone–hydroxyapatite composite on mouse bone marrow-derived osteoblasts and endothelial cells. J Orthop Surg Res 4(1):1–9CrossRef Yu H, Wooley PH, Yang S-Y (2009) Biocompatibility of poly-ε-caprolactone–hydroxyapatite composite on mouse bone marrow-derived osteoblasts and endothelial cells. J Orthop Surg Res 4(1):1–9CrossRef
121.
go back to reference Zhang YZ, Venugopal J, Huang ZM, Lim CT, Ramakrishna S (2005) Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromolecules 6(5):2583–2589CrossRef Zhang YZ, Venugopal J, Huang ZM, Lim CT, Ramakrishna S (2005) Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromolecules 6(5):2583–2589CrossRef
122.
go back to reference Wu KJ, Wu CS, Chang JS (2007) Biodegradability and mechanical properties of polycaprolactone composites encapsulating phosphate-solubilizing bacterium Bacillus sp PG01. Process Biochem 42(4):669–675CrossRef Wu KJ, Wu CS, Chang JS (2007) Biodegradability and mechanical properties of polycaprolactone composites encapsulating phosphate-solubilizing bacterium Bacillus sp PG01. Process Biochem 42(4):669–675CrossRef
123.
go back to reference Lu TH, Li Q, Chen WS, Yu HP (2014) Composite aerogels based on dialdehyde nanocellulose and collagen for potential applications as wound dressing and tissue engineering scaffold. Compos Sci Technol 94:132–138CrossRef Lu TH, Li Q, Chen WS, Yu HP (2014) Composite aerogels based on dialdehyde nanocellulose and collagen for potential applications as wound dressing and tissue engineering scaffold. Compos Sci Technol 94:132–138CrossRef
124.
go back to reference Abdelrahman T, Newton H (2011) Wound dressings: principles and practice. Surgery (Oxford) 29(10):491–495CrossRef Abdelrahman T, Newton H (2011) Wound dressings: principles and practice. Surgery (Oxford) 29(10):491–495CrossRef
125.
go back to reference Boyce ST, Warden GD (2002) Principles and practices for treatment of cutaneous wounds with cultured skin substitutes. Am J Surg 183(4):445–456CrossRef Boyce ST, Warden GD (2002) Principles and practices for treatment of cutaneous wounds with cultured skin substitutes. Am J Surg 183(4):445–456CrossRef
126.
go back to reference Benbow M (2010) Managing wound pain: Is there an ‘ideal dressing’? Br J Nurs 19(20):1273–1274CrossRef Benbow M (2010) Managing wound pain: Is there an ‘ideal dressing’? Br J Nurs 19(20):1273–1274CrossRef
127.
go back to reference Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97(8):2892–2923CrossRef Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97(8):2892–2923CrossRef
128.
go back to reference Singh B, Sharma S, Dhiman A (2013) Design of antibiotic containing hydrogel wound dressings: biomedical properties and histological study of wound healing. Int J Pharm 457(1):82–91CrossRef Singh B, Sharma S, Dhiman A (2013) Design of antibiotic containing hydrogel wound dressings: biomedical properties and histological study of wound healing. Int J Pharm 457(1):82–91CrossRef
129.
go back to reference Dreifke MB, Jayasuriya AA, Jayasuriya AC (2015) Current wound healing procedures and potential care. Mater Sci Eng C 48:651–662CrossRef Dreifke MB, Jayasuriya AA, Jayasuriya AC (2015) Current wound healing procedures and potential care. Mater Sci Eng C 48:651–662CrossRef
130.
go back to reference Choi JS, Kim HS, Yoo HS (2015) Electrospinning strategies of drug-incorporated nanofibrous mats for wound recovery. Drug Deliv Transl Res 5(2):137–145CrossRef Choi JS, Kim HS, Yoo HS (2015) Electrospinning strategies of drug-incorporated nanofibrous mats for wound recovery. Drug Deliv Transl Res 5(2):137–145CrossRef
131.
go back to reference Maver T, Maver U, Mostegel F, Grieser T, Spirk S, Smrke D, Stana Kleinschek K (2015) Cellulose based thin films as a platform for drug release studies to mimick wound dressing materials. Cellulose 22:749–761CrossRef Maver T, Maver U, Mostegel F, Grieser T, Spirk S, Smrke D, Stana Kleinschek K (2015) Cellulose based thin films as a platform for drug release studies to mimick wound dressing materials. Cellulose 22:749–761CrossRef
132.
go back to reference Jayakumar R, Prabaharan M, Sudheesh Kumar PT, Nair SV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29(3):322–337CrossRef Jayakumar R, Prabaharan M, Sudheesh Kumar PT, Nair SV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29(3):322–337CrossRef
133.
go back to reference Moritz S, Wiegand C, Wesarg F, Hessler N, Müller FA, Kralisch D, Hipler U-C, Fischer D (2014) Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine. Int J Pharm 471(1–2):45–55CrossRef Moritz S, Wiegand C, Wesarg F, Hessler N, Müller FA, Kralisch D, Hipler U-C, Fischer D (2014) Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine. Int J Pharm 471(1–2):45–55CrossRef
134.
go back to reference Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94(1):603–611CrossRef Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94(1):603–611CrossRef
135.
go back to reference Hrubesh LW, Pekala RW (1994) Dielectric properties and electronic applications of aerogels. In: Attia Y (ed) Sol–gel processing and applications. Springer, Berlin, pp 363–367CrossRef Hrubesh LW, Pekala RW (1994) Dielectric properties and electronic applications of aerogels. In: Attia Y (ed) Sol–gel processing and applications. Springer, Berlin, pp 363–367CrossRef
136.
go back to reference Sinko K, Cser L, Mezei R, Avdeev M, Peterlik H, Trimmel G, Husing N, Fratzl P (2000) Structure investigation of intelligent aerogels. Phys B 276:392–393CrossRef Sinko K, Cser L, Mezei R, Avdeev M, Peterlik H, Trimmel G, Husing N, Fratzl P (2000) Structure investigation of intelligent aerogels. Phys B 276:392–393CrossRef
138.
go back to reference Contolini RJ, Hrubesh LW, Bernhardt AF (1993) Aerogels for microelectronic applications: fast inexpensive, and light as air. Lawrence Livermore National Lab, Livermore Contolini RJ, Hrubesh LW, Bernhardt AF (1993) Aerogels for microelectronic applications: fast inexpensive, and light as air. Lawrence Livermore National Lab, Livermore
139.
go back to reference Poelz G, Riethmuller R (1982) Preparation of silica aerogel for Cherenkov counters. Nucl Instrum Methods 195(3):491–503CrossRef Poelz G, Riethmuller R (1982) Preparation of silica aerogel for Cherenkov counters. Nucl Instrum Methods 195(3):491–503CrossRef
140.
go back to reference Sallaz-Damaz Y, Derome L, Mangin-Brinet M, Loth M, Protasov K, Putze A, Vargas-Trevino M, Veziant O, Buenerd M, Menchaca-Rocha A, Belmont E, Vargas-Magana M, Leon-Vargas H, Ortiz-Velasquez A, Malinine A, Barao F, Pereira R, Bellunato T, Matteuzzi C, Perego DL (2010) Characterization study of silica aerogel for Cherenkov imaging. Nucl Instrum Meth A 614(2):184–195CrossRef Sallaz-Damaz Y, Derome L, Mangin-Brinet M, Loth M, Protasov K, Putze A, Vargas-Trevino M, Veziant O, Buenerd M, Menchaca-Rocha A, Belmont E, Vargas-Magana M, Leon-Vargas H, Ortiz-Velasquez A, Malinine A, Barao F, Pereira R, Bellunato T, Matteuzzi C, Perego DL (2010) Characterization study of silica aerogel for Cherenkov imaging. Nucl Instrum Meth A 614(2):184–195CrossRef
141.
go back to reference Allkofer Y, Amsler C, Horikawa S, Johnson I, Regenfus C, Rochet J (2007) A novel aerogel Cherenkov detector for DIRAC-II. Nucl Instrum Methods A 582(2):497–508CrossRef Allkofer Y, Amsler C, Horikawa S, Johnson I, Regenfus C, Rochet J (2007) A novel aerogel Cherenkov detector for DIRAC-II. Nucl Instrum Methods A 582(2):497–508CrossRef
142.
go back to reference Kharzheev YN (2008) Use of silica aerogels in Cherenkov counters. Phys Part Nucl 39(1):107–135CrossRef Kharzheev YN (2008) Use of silica aerogels in Cherenkov counters. Phys Part Nucl 39(1):107–135CrossRef
143.
go back to reference Jensen KI, Schultz JM, Kristiansen FH (2004) Development of windows based on highly insulating aerogel glazings. J Non-Cryst Solids 350:351–357CrossRef Jensen KI, Schultz JM, Kristiansen FH (2004) Development of windows based on highly insulating aerogel glazings. J Non-Cryst Solids 350:351–357CrossRef
144.
go back to reference Xie Y, Beamish J (1996) Ultrasonic velocity and attenuation in silica aerogels at low temperatures. Czech J Phys 46:2723–2724CrossRef Xie Y, Beamish J (1996) Ultrasonic velocity and attenuation in silica aerogels at low temperatures. Czech J Phys 46:2723–2724CrossRef
145.
go back to reference Schlief T, Gross J, Fricke J (1992) Ultrasonic-attenuation in silica aerogels. J Non-Cryst Solids 145(1–3):223–226CrossRef Schlief T, Gross J, Fricke J (1992) Ultrasonic-attenuation in silica aerogels. J Non-Cryst Solids 145(1–3):223–226CrossRef
146.
go back to reference Merzbacher CI, Meier SR, Pierce JR, Korwin ML (2001) Carbon aerogels as broadband non-reflective materials. J Non-Cryst Solids 285(1–3):210–215CrossRef Merzbacher CI, Meier SR, Pierce JR, Korwin ML (2001) Carbon aerogels as broadband non-reflective materials. J Non-Cryst Solids 285(1–3):210–215CrossRef
147.
go back to reference Moreno-Castilla C, Maldonado-Hodar FJ (2005) Carbon aerogels for catalysis applications: an overview. Carbon 43(3):455–465CrossRef Moreno-Castilla C, Maldonado-Hodar FJ (2005) Carbon aerogels for catalysis applications: an overview. Carbon 43(3):455–465CrossRef
148.
go back to reference Jones SM (2006) Aerogel: space exploration applications. J Sol–Gel Sci Technol 40(2–3):351–357CrossRef Jones SM (2006) Aerogel: space exploration applications. J Sol–Gel Sci Technol 40(2–3):351–357CrossRef
149.
go back to reference Reynolds JG, Coronado PR, Hrubesh LW (2001) Hydrophobic aerogels for oil-spill cleanup—intrinsic absorbing properties. Energ Source 23(9):831–843CrossRef Reynolds JG, Coronado PR, Hrubesh LW (2001) Hydrophobic aerogels for oil-spill cleanup—intrinsic absorbing properties. Energ Source 23(9):831–843CrossRef
150.
go back to reference Krainov VP, Smirnov MB (2002) Laser induced fusion in aerogel. Laser Phys 12(4):781–785 Krainov VP, Smirnov MB (2002) Laser induced fusion in aerogel. Laser Phys 12(4):781–785
151.
go back to reference Krainov VP, Smirnov MB (2001) Nuclear fusion induced by a super-intense ultrashort laser pulse in a deuterated glass aerogel. J Exp Theor Phys 93(3):485–490CrossRef Krainov VP, Smirnov MB (2001) Nuclear fusion induced by a super-intense ultrashort laser pulse in a deuterated glass aerogel. J Exp Theor Phys 93(3):485–490CrossRef
152.
go back to reference Cumana S, Ardao I, Zeng A-P, Smirnova I (2014) Glucose-6-phosphate dehydrogenase encapsulated in silica-based hydrogels for operation in a microreactor. Eng Life Sci 14(2):170–179CrossRef Cumana S, Ardao I, Zeng A-P, Smirnova I (2014) Glucose-6-phosphate dehydrogenase encapsulated in silica-based hydrogels for operation in a microreactor. Eng Life Sci 14(2):170–179CrossRef
Metadata
Title
Review of aerogel-based materials in biomedical applications
Authors
Janja Stergar
Uroš Maver
Publication date
01-03-2016
Publisher
Springer US
Published in
Journal of Sol-Gel Science and Technology / Issue 3/2016
Print ISSN: 0928-0707
Electronic ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-016-3968-5

Other articles of this Issue 3/2016

Journal of Sol-Gel Science and Technology 3/2016 Go to the issue

Brief Communication: Nano-structured materials (particles, fibers, colloids, composites, etc.)

Synthesis of silica nanoparticles from sodium silicate under alkaline conditions

Premium Partners