Skip to main content
Top
Published in: International Journal on Interactive Design and Manufacturing (IJIDeM) 5/2023

21-11-2022 | Review

Review on multi-objective optimization of FDM process parameters for composite materials

Authors: Rahul Patel, Suketu Jani, Ankita Joshi

Published in: International Journal on Interactive Design and Manufacturing (IJIDeM) | Issue 5/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

3D printing is a process used in many industrial sectors like automobile, aircraft, buildings and several medical fields to fabricate products.Fused deposition modeling is a type of 3D printing processes also known as fused filament manufacturing. Two main response parameters must be considered when using FDM to manufacture parts: Part strength and dimensional accuracy. Though FDM is a popular method for producing complicated geometric products in a less time, it has limitations, including poor mechanical characteristics and dimensional accuracy. An extensive review is carried to know the influence of following process variables on mechanical characteristics such as Thickness of layers, Printing speed, Extrusion Temperature, Infill Density, Infill Patterns, nozzle Diameter, raster Angle, build orientation. It is crucial to choose the best possible combination of process parameters. The FDM process parameters can be optimized using a variety of strategies. As a result, a comprehensive review has been presented on pre-processing to examine the characteristics for printed parts. The two components of study are critical for increasing overall characteristics, i.e., improving functional utility and enriching the uses of FDM printed parts. The current report meant to provide basic assistance and guidance to researchers working on the subject of FDM Process Parameters.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gardan, J.: Smart materials in additive manufacturing: state of the art and trends. Virtual Phys. Prototyp. 14, 1–18 (2019)CrossRef Gardan, J.: Smart materials in additive manufacturing: state of the art and trends. Virtual Phys. Prototyp. 14, 1–18 (2019)CrossRef
2.
go back to reference Qader, I., Kök, M., Dagdelen, F., Aydogdu, Y.: A review of smart materials researches and applications. El-Cezeri Fen ve Mühendislik Dergisi 6, 755–788 (2019) Qader, I., Kök, M., Dagdelen, F., Aydogdu, Y.: A review of smart materials researches and applications. El-Cezeri Fen ve Mühendislik Dergisi 6, 755–788 (2019)
3.
go back to reference Mustapha, K.B., Metwalli, K.M.: A review of fused deposition modelling for 3D printing of smart polymeric materials and composites. Eur. Polym. J 156, 110591 (2021)CrossRef Mustapha, K.B., Metwalli, K.M.: A review of fused deposition modelling for 3D printing of smart polymeric materials and composites. Eur. Polym. J 156, 110591 (2021)CrossRef
5.
go back to reference Wang, Y., Xu, Z., Wu, D., Bai, J.: Current status and prospects of polymer powder 3D printing technologies. Materials 13, 2406 (2020)CrossRef Wang, Y., Xu, Z., Wu, D., Bai, J.: Current status and prospects of polymer powder 3D printing technologies. Materials 13, 2406 (2020)CrossRef
6.
go back to reference Mwema, F.M., Akinlabi, E.T.: Basics of fused deposition modelling (FDM). In: Mwema, F.M., Akinlabi, E.T. (eds.) Fused Deposition Modeling: Strategies for Quality Enhancement, pp. 1–15. Springer, Cham (2020)CrossRef Mwema, F.M., Akinlabi, E.T.: Basics of fused deposition modelling (FDM). In: Mwema, F.M., Akinlabi, E.T. (eds.) Fused Deposition Modeling: Strategies for Quality Enhancement, pp. 1–15. Springer, Cham (2020)CrossRef
8.
go back to reference Cano-Vicent, A., Tambuwala, M.M., Hassan, S.S., Barh, D., Aljabali, A.A.A., Birkett, M., Arjunan, A., Serrano-Aroca, Á.: Fused deposition modelling: Current status, methodology, applications and future prospects. Addit. Manuf. 47, 102378 (2021) Cano-Vicent, A., Tambuwala, M.M., Hassan, S.S., Barh, D., Aljabali, A.A.A., Birkett, M., Arjunan, A., Serrano-Aroca, Á.: Fused deposition modelling: Current status, methodology, applications and future prospects. Addit. Manuf. 47, 102378 (2021)
9.
go back to reference Bardot, M., Schulz, M.D.: Biodegradable poly(lactic acid) nanocomposites for fused deposition modeling 3D printing. Nanomaterials (Basel) 10, 2567 (2020)CrossRef Bardot, M., Schulz, M.D.: Biodegradable poly(lactic acid) nanocomposites for fused deposition modeling 3D printing. Nanomaterials (Basel) 10, 2567 (2020)CrossRef
10.
go back to reference Chiulan, I., Frone, A.N., Brandabur, C., Panaitescu, D.M.: Recent advances in 3D printing of aliphatic polyesters. Bioengineering (Basel) 5, 2 (2017)CrossRef Chiulan, I., Frone, A.N., Brandabur, C., Panaitescu, D.M.: Recent advances in 3D printing of aliphatic polyesters. Bioengineering (Basel) 5, 2 (2017)CrossRef
11.
go back to reference Wasti, S., Adhikari, S.: Use of biomaterials for 3D printing by fused deposition modeling technique: a review. Front. Chem. 8, 315 (2020)CrossRef Wasti, S., Adhikari, S.: Use of biomaterials for 3D printing by fused deposition modeling technique: a review. Front. Chem. 8, 315 (2020)CrossRef
12.
go back to reference Peng, A.H., Wang, Z.M.: Researches into influence of process parameters on FDM parts precision. Appl. Mech. Mater. 34–35, 338–343 (2010)CrossRef Peng, A.H., Wang, Z.M.: Researches into influence of process parameters on FDM parts precision. Appl. Mech. Mater. 34–35, 338–343 (2010)CrossRef
13.
go back to reference Sood, A.K., Ohdar, R.K., Mahapatra, S.S.: Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater. Des. 31, 287–295 (2010)CrossRef Sood, A.K., Ohdar, R.K., Mahapatra, S.S.: Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater. Des. 31, 287–295 (2010)CrossRef
14.
go back to reference Vishwas, M., Basavaraj, C.K., Vinyas, M.: Experimental investigation using Taguchi method to optimize process parameters of fused deposition modeling for ABS and nylon materials. Mater. Today Proc. 5, 7106–7114 (2018)CrossRef Vishwas, M., Basavaraj, C.K., Vinyas, M.: Experimental investigation using Taguchi method to optimize process parameters of fused deposition modeling for ABS and nylon materials. Mater. Today Proc. 5, 7106–7114 (2018)CrossRef
15.
16.
go back to reference Yang, T.-C., Yeh, C.-H.: Morphology and mechanical properties of 3D printed wood fiber/polylactic acid composite parts using fused deposition modeling (FDM): the effects of printing speed. Polymers 12, 1334 (2020)CrossRef Yang, T.-C., Yeh, C.-H.: Morphology and mechanical properties of 3D printed wood fiber/polylactic acid composite parts using fused deposition modeling (FDM): the effects of printing speed. Polymers 12, 1334 (2020)CrossRef
17.
go back to reference Sbriglia, L.R., Baker, A.M., Thompson, J.M., Morgan, R.V., Wachtor, A.J., Bernardin, J.D.: Embedding sensors in FDM plastic parts during additive manufacturing. In: Mains, M. (ed.) Topics in Modal Analysis & Testing, vol. 10, pp. 205–214. Springer, Cham (2016)CrossRef Sbriglia, L.R., Baker, A.M., Thompson, J.M., Morgan, R.V., Wachtor, A.J., Bernardin, J.D.: Embedding sensors in FDM plastic parts during additive manufacturing. In: Mains, M. (ed.) Topics in Modal Analysis & Testing, vol. 10, pp. 205–214. Springer, Cham (2016)CrossRef
18.
go back to reference Kuznetsov, V.E., Solonin, A.N., Tavitov, A., Urzhumtsev, O., Vakulik, A.: Increasing strength of FFF three-dimensional printed parts by influencing on temperature-related parameters of the process. Rapid Prototyp. J. 26, 107–121 (2020)CrossRef Kuznetsov, V.E., Solonin, A.N., Tavitov, A., Urzhumtsev, O., Vakulik, A.: Increasing strength of FFF three-dimensional printed parts by influencing on temperature-related parameters of the process. Rapid Prototyp. J. 26, 107–121 (2020)CrossRef
19.
go back to reference Coogan, T.J., Kazmer, D.O.: Bond and part strength in fused deposition modeling. Rapid Prototyp. J. 23, 414–422 (2017)CrossRef Coogan, T.J., Kazmer, D.O.: Bond and part strength in fused deposition modeling. Rapid Prototyp. J. 23, 414–422 (2017)CrossRef
20.
go back to reference Wang, L., Gramlich, W.M., Gardner, D.J.: Improving the impact strength of Poly(lactic acid) (PLA) in fused layer modeling (FLM). Polymer. 114, 242–248 (2017)CrossRef Wang, L., Gramlich, W.M., Gardner, D.J.: Improving the impact strength of Poly(lactic acid) (PLA) in fused layer modeling (FLM). Polymer. 114, 242–248 (2017)CrossRef
21.
go back to reference Liu, Z., Wang, Y., Wu, B., Cui, C., Yu, G., Yan, C.: A critical review of 3D printing technology in manufacturing polylactic acid parts. Int. J. Adv. Manuf. Technol. 102, 2877–2889 (2019)CrossRef Liu, Z., Wang, Y., Wu, B., Cui, C., Yu, G., Yan, C.: A critical review of 3D printing technology in manufacturing polylactic acid parts. Int. J. Adv. Manuf. Technol. 102, 2877–2889 (2019)CrossRef
22.
go back to reference Shanmugam, V., Pavan, M.V., Babu, K., Karnan, B.: Fused deposition modeling based polymeric materials and their performance: a review. Polym. Compos. 42, 5656–5677 (2021)CrossRef Shanmugam, V., Pavan, M.V., Babu, K., Karnan, B.: Fused deposition modeling based polymeric materials and their performance: a review. Polym. Compos. 42, 5656–5677 (2021)CrossRef
23.
go back to reference Zhou, X., Hsieh, S.-J., Sun, Y.: Experimental and numerical investigation of the thermal behaviour of polylactic acid during the fused deposition process. Virtual Phys. Prototyp. 12, 221–233 (2017)CrossRef Zhou, X., Hsieh, S.-J., Sun, Y.: Experimental and numerical investigation of the thermal behaviour of polylactic acid during the fused deposition process. Virtual Phys. Prototyp. 12, 221–233 (2017)CrossRef
24.
go back to reference Vinaykumar, S.V.J., Jatti, S., Patel, A.P., Vijaykumar, S., Jatti,: A study on effect of fused deposition modeling process parameters on mechanical properties. Int. J. Sci. Technol. Res. 8, 689–693 (2019) Vinaykumar, S.V.J., Jatti, S., Patel, A.P., Vijaykumar, S., Jatti,: A study on effect of fused deposition modeling process parameters on mechanical properties. Int. J. Sci. Technol. Res. 8, 689–693 (2019)
25.
go back to reference Vicente, C.M.S., Martins, T.S., Leite, M., Ribeiro, A., Reis, L.: Influence of fused deposition modeling parameters on the mechanical properties of ABS parts. Polym. Adv. Technol. 31, 501–507 (2020)CrossRef Vicente, C.M.S., Martins, T.S., Leite, M., Ribeiro, A., Reis, L.: Influence of fused deposition modeling parameters on the mechanical properties of ABS parts. Polym. Adv. Technol. 31, 501–507 (2020)CrossRef
26.
go back to reference Ouballouch, A., alaiji, R.E., Ettaqi, S., Bouayad, A., Sallaou, M., Lasri, L.: Evaluation of dimensional accuracy and mechanical behavior of 3D printed reinforced polyamide parts. Procedia Struct. Integr. 19, 433–441 (2019)CrossRef Ouballouch, A., alaiji, R.E., Ettaqi, S., Bouayad, A., Sallaou, M., Lasri, L.: Evaluation of dimensional accuracy and mechanical behavior of 3D printed reinforced polyamide parts. Procedia Struct. Integr. 19, 433–441 (2019)CrossRef
27.
go back to reference Ramkumar, P.L.: Investigation on the effect of process parameters on impact strength of fused deposition modelling specimens. IOP Conf. Ser. Mater. Sci. Eng. 491, 012026 (2019)CrossRef Ramkumar, P.L.: Investigation on the effect of process parameters on impact strength of fused deposition modelling specimens. IOP Conf. Ser. Mater. Sci. Eng. 491, 012026 (2019)CrossRef
28.
go back to reference Alafaghani, A., Qattawi, A., Alrawi, B., Guzman, A.: Experimental optimization of fused deposition modelling processing parameters: a design-for-manufacturing approach. Procedia Manuf. 10, 791–803 (2017)CrossRef Alafaghani, A., Qattawi, A., Alrawi, B., Guzman, A.: Experimental optimization of fused deposition modelling processing parameters: a design-for-manufacturing approach. Procedia Manuf. 10, 791–803 (2017)CrossRef
29.
go back to reference Akhoundi, B., Behravesh, A.H.: Effect of filling pattern on the tensile and flexural mechanical properties of FDM 3D printed products. Exp. Mech. 59, 883–897 (2019)CrossRef Akhoundi, B., Behravesh, A.H.: Effect of filling pattern on the tensile and flexural mechanical properties of FDM 3D printed products. Exp. Mech. 59, 883–897 (2019)CrossRef
30.
go back to reference Aloyaydi, B., Sivasankaran, S., Mustafa, A.: Investigation of infill-patterns on mechanical response of 3D printed poly-lactic-acid. Polym. Test. 87, 106557 (2020)CrossRef Aloyaydi, B., Sivasankaran, S., Mustafa, A.: Investigation of infill-patterns on mechanical response of 3D printed poly-lactic-acid. Polym. Test. 87, 106557 (2020)CrossRef
31.
go back to reference Chadha, A., Ul Haq, M.I., Raina, A., Singh, R.R., Penumarti, N.B., Bishnoi, M.S.: Effect of fused deposition modelling process parameters on mechanical properties of 3D printed parts. World J. Eng. 16, 550–559 (2019)CrossRef Chadha, A., Ul Haq, M.I., Raina, A., Singh, R.R., Penumarti, N.B., Bishnoi, M.S.: Effect of fused deposition modelling process parameters on mechanical properties of 3D printed parts. World J. Eng. 16, 550–559 (2019)CrossRef
32.
go back to reference Ćwikła, G., Grabowik, C., Kalinowski, K., Paprocka, I., Ociepka, P.: The influence of printing parameters on selected mechanical properties of FDM/FFF 3D-printed parts. IOP Conf. Ser. Mater. Sci. Eng. 227, 012033 (2017)CrossRef Ćwikła, G., Grabowik, C., Kalinowski, K., Paprocka, I., Ociepka, P.: The influence of printing parameters on selected mechanical properties of FDM/FFF 3D-printed parts. IOP Conf. Ser. Mater. Sci. Eng. 227, 012033 (2017)CrossRef
33.
go back to reference Triyono, J., Sukanto, H., Saputra, R.M., Smaradhana, D.F.: The effect of nozzle hole diameter of 3D printing on porosity and tensile strength parts using polylactic acid material. Open Eng. 10, 762–768 (2020)CrossRef Triyono, J., Sukanto, H., Saputra, R.M., Smaradhana, D.F.: The effect of nozzle hole diameter of 3D printing on porosity and tensile strength parts using polylactic acid material. Open Eng. 10, 762–768 (2020)CrossRef
34.
go back to reference Al Rashid, A., Abdul Qadir, S., Koç, M.: Microscopic analysis on dimensional capability of fused filament fabrication three-dimensional printing process. J. Elastomers Plast. 54, 385–403 (2021)CrossRef Al Rashid, A., Abdul Qadir, S., Koç, M.: Microscopic analysis on dimensional capability of fused filament fabrication three-dimensional printing process. J. Elastomers Plast. 54, 385–403 (2021)CrossRef
35.
go back to reference Kuznetsov, V.E., Solonin, A.N., Urzhumtsev, O.D., Schilling, R., Tavitov, A.G.: Strength of PLA components fabricated with fused deposition technology using a desktop 3D printer as a function of geometrical parameters of the process. Polymers 10, 313 (2018)CrossRef Kuznetsov, V.E., Solonin, A.N., Urzhumtsev, O.D., Schilling, R., Tavitov, A.G.: Strength of PLA components fabricated with fused deposition technology using a desktop 3D printer as a function of geometrical parameters of the process. Polymers 10, 313 (2018)CrossRef
36.
go back to reference Chung Wang, C., Lin, T.W., Hu, S.S.: Optimizing the rapid prototyping process by integrating the Taguchi method with the Gray relational analysis. Rapid Prototyp. J. 13, 304–315 (2007)CrossRef Chung Wang, C., Lin, T.W., Hu, S.S.: Optimizing the rapid prototyping process by integrating the Taguchi method with the Gray relational analysis. Rapid Prototyp. J. 13, 304–315 (2007)CrossRef
37.
go back to reference Nidagundi, V.B., Keshavamurthy, R., Prakash, C.P.S.: Studies on parametric optimization for fused deposition modelling process. Mater. Today Proc. 2, 1691–1699 (2015)CrossRef Nidagundi, V.B., Keshavamurthy, R., Prakash, C.P.S.: Studies on parametric optimization for fused deposition modelling process. Mater. Today Proc. 2, 1691–1699 (2015)CrossRef
38.
go back to reference Panda, S., Padhee, S., Sood, A.K., Mahapatra, S.: Optimization of fused deposition modelling (FDM) process parameters using bacterial foraging technique. Intell. Inform. Manag. 1, 89–97 (2009) Panda, S., Padhee, S., Sood, A.K., Mahapatra, S.: Optimization of fused deposition modelling (FDM) process parameters using bacterial foraging technique. Intell. Inform. Manag. 1, 89–97 (2009)
39.
go back to reference Ziemian, S., Okwara, M., Ziemian, C.W.: Tensile and fatigue behavior of layered acrylonitrile butadiene styrene. Rapid Prototyp. J. 21, 270–278 (2015)CrossRef Ziemian, S., Okwara, M., Ziemian, C.W.: Tensile and fatigue behavior of layered acrylonitrile butadiene styrene. Rapid Prototyp. J. 21, 270–278 (2015)CrossRef
40.
go back to reference Zhou, Y.-G., Su, B., Turng, L.: Deposition-induced effects of isotactic polypropylene and polycarbonate composites during fused deposition modeling. Rapid Prototyp. J. 23, 869–880 (2017)CrossRef Zhou, Y.-G., Su, B., Turng, L.: Deposition-induced effects of isotactic polypropylene and polycarbonate composites during fused deposition modeling. Rapid Prototyp. J. 23, 869–880 (2017)CrossRef
41.
go back to reference Raut, S., Jatti, V.S., Khedkar, N.K., Singh, T.P.: Investigation of the effect of built orientation on mechanical properties and total cost of FDM parts. Procedia Mater. Sci. 6, 1625–1630 (2014)CrossRef Raut, S., Jatti, V.S., Khedkar, N.K., Singh, T.P.: Investigation of the effect of built orientation on mechanical properties and total cost of FDM parts. Procedia Mater. Sci. 6, 1625–1630 (2014)CrossRef
42.
go back to reference Abdelrhman, A.M., Wei Gan, W., Kurniawan, D.: Effect of part orientation on dimensional accuracy, part strength, and surface quality of three dimensional printed part. IOP Conf. Ser. Mater. Sci. Eng. 694, 012048 (2019)CrossRef Abdelrhman, A.M., Wei Gan, W., Kurniawan, D.: Effect of part orientation on dimensional accuracy, part strength, and surface quality of three dimensional printed part. IOP Conf. Ser. Mater. Sci. Eng. 694, 012048 (2019)CrossRef
Metadata
Title
Review on multi-objective optimization of FDM process parameters for composite materials
Authors
Rahul Patel
Suketu Jani
Ankita Joshi
Publication date
21-11-2022
Publisher
Springer Paris
Published in
International Journal on Interactive Design and Manufacturing (IJIDeM) / Issue 5/2023
Print ISSN: 1955-2513
Electronic ISSN: 1955-2505
DOI
https://doi.org/10.1007/s12008-022-01111-9

Other articles of this Issue 5/2023

International Journal on Interactive Design and Manufacturing (IJIDeM) 5/2023 Go to the issue

Premium Partner