Skip to main content
Top
Published in: Wireless Personal Communications 3/2020

10-08-2020

Review on Positioning Technology of Wireless Sensor Networks

Authors: Mao Li, Feng Jiang, Cong Pei

Published in: Wireless Personal Communications | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the large-scale application of wireless sensor network, the position information of sensor nodes is more and more important. The position information of the unknown nodes are mainly depended on the beacon node the in wireless sensor network. First, the concept and characteristics of wireless sensor networks of the positioning technologies are briefly described. Then, the calculation methods of existing node positioning technologies are introduced. Next, the wireless sensors are described in detail from two aspects: range-based and range-free. Finally, summarizes the possible defects of positioning technology and looks forward to the future development of the node positioning technology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Fei, Z., Li, B., Yang, S., et al. (2016). A survey of multi-objective optimization in wireless sensor networks: Metrics, algorithms and open problems. IEEE Communications Surveys and Tutorials, 99, 1–1. Fei, Z., Li, B., Yang, S., et al. (2016). A survey of multi-objective optimization in wireless sensor networks: Metrics, algorithms and open problems. IEEE Communications Surveys and Tutorials, 99, 1–1.
2.
go back to reference Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.
3.
go back to reference Sohrabi, K., Gao, J., Ailawadhi, V., et al. (2000). Protocols for self-organization of a wireless sensor network. IEEE Personal Communications, 7(5), 16–27. Sohrabi, K., Gao, J., Ailawadhi, V., et al. (2000). Protocols for self-organization of a wireless sensor network. IEEE Personal Communications, 7(5), 16–27.
4.
go back to reference Mao, G., Fidan, B., & Anderson, B. D. O. (2007). Wireless sensor network localization techniques. Computer Networks, 51(10), 2529–2553.MATH Mao, G., Fidan, B., & Anderson, B. D. O. (2007). Wireless sensor network localization techniques. Computer Networks, 51(10), 2529–2553.MATH
5.
go back to reference Yang, Z., & Liu, Y. (2010). Quality of trilateration: Confidence-based iterative localization. IEEE Transactions on Parallel and Distributed Systems, 21(5), 631–640. Yang, Z., & Liu, Y. (2010). Quality of trilateration: Confidence-based iterative localization. IEEE Transactions on Parallel and Distributed Systems, 21(5), 631–640.
6.
go back to reference Keppel, E. (2010). Approximating complex surfaces by triangulation of contour lines. IBM Journal of Research and Development, 19(1), 2–11.MathSciNetMATH Keppel, E. (2010). Approximating complex surfaces by triangulation of contour lines. IBM Journal of Research and Development, 19(1), 2–11.MathSciNetMATH
7.
go back to reference Bialer, O., Dan, R., & Weiss, A. J. (2013). Maximum-likelihood direct position estimation in dense multipath. IEEE Transactions on Vehicular Technology, 62(5), 2069–2079. Bialer, O., Dan, R., & Weiss, A. J. (2013). Maximum-likelihood direct position estimation in dense multipath. IEEE Transactions on Vehicular Technology, 62(5), 2069–2079.
8.
go back to reference Shah, S. F. A., Srirangarajan, S., & Tewfik, A. H. (2010). Implementation of a directional beacon-based position location algorithm in a signal processing framework. IEEE Transactions on Wireless Communications, 9(3), 1044–1053. Shah, S. F. A., Srirangarajan, S., & Tewfik, A. H. (2010). Implementation of a directional beacon-based position location algorithm in a signal processing framework. IEEE Transactions on Wireless Communications, 9(3), 1044–1053.
9.
go back to reference Chan, F. K. W., & So, H. C. (2009). Accurate distributed range-based positioning algorithm for wireless sensor networks. IEEE Transactions on Signal Processing, 57(10), 4100–4105.MathSciNetMATH Chan, F. K. W., & So, H. C. (2009). Accurate distributed range-based positioning algorithm for wireless sensor networks. IEEE Transactions on Signal Processing, 57(10), 4100–4105.MathSciNetMATH
10.
go back to reference Alavi, B., & Pahlavan, K. (2006). Modeling of the TOA-based distance measurement error using UWB indoor radio measurements. IEEE Communications Letters, 10(4), 275–277. Alavi, B., & Pahlavan, K. (2006). Modeling of the TOA-based distance measurement error using UWB indoor radio measurements. IEEE Communications Letters, 10(4), 275–277.
11.
go back to reference Cong, L., & Zhuang, W. (2001). Non-line-of-sight error mitigation in TDOA mobile location. Proceedings of IEEE Globecom Telecommunications, 1(2), 560–573. Cong, L., & Zhuang, W. (2001). Non-line-of-sight error mitigation in TDOA mobile location. Proceedings of IEEE Globecom Telecommunications, 1(2), 560–573.
12.
go back to reference Niculescu, D., & Nath, B. (2003). Ad hoc positioning system (APS) using AOA. In Joint conference of the IEEE computer and communications. IEEE societies. IEEE (Vol. 3, pp. 1734–1743). Niculescu, D., & Nath, B. (2003). Ad hoc positioning system (APS) using AOA. In Joint conference of the IEEE computer and communications. IEEE societies. IEEE (Vol. 3, pp. 1734–1743).
13.
go back to reference Paul, A. S., & Wan, E. A. (2009). RSSI-based indoor localization and tracking using sigma-point Kalman Smoothers. IEEE Journal of Selected Topics in Signal Processing, 3(5), 860–873. Paul, A. S., & Wan, E. A. (2009). RSSI-based indoor localization and tracking using sigma-point Kalman Smoothers. IEEE Journal of Selected Topics in Signal Processing, 3(5), 860–873.
14.
go back to reference Li, X., & Pahlavan, K. (2004). Super-resolution TOA estimation with diversity for indoor geolocation. IEEE Transactions on Wireless Communications, 3(1), 224–234. Li, X., & Pahlavan, K. (2004). Super-resolution TOA estimation with diversity for indoor geolocation. IEEE Transactions on Wireless Communications, 3(1), 224–234.
15.
go back to reference Tomic, S., & Beko, M. (2018). Exact Robust solution to TW-ToA-based target localization problem with clock imperfections. IEEE Signal Processing Letters, 25(4), 531–535. Tomic, S., & Beko, M. (2018). Exact Robust solution to TW-ToA-based target localization problem with clock imperfections. IEEE Signal Processing Letters, 25(4), 531–535.
16.
go back to reference Wang, Y., Ma, S., & Chen, C. L. P. (2014). TOA-based passive localization in quasi-synchronous networks. IEEE Communications Letters, 18(4), 592–595. Wang, Y., Ma, S., & Chen, C. L. P. (2014). TOA-based passive localization in quasi-synchronous networks. IEEE Communications Letters, 18(4), 592–595.
17.
go back to reference Tomic, S., Beko, M., Rui, D., et al. (2017). A robust bisection-based estimator for TOA-based target localization in NLOS environments. IEEE Communications Letters, 99, 1–1. Tomic, S., Beko, M., Rui, D., et al. (2017). A robust bisection-based estimator for TOA-based target localization in NLOS environments. IEEE Communications Letters, 99, 1–1.
18.
go back to reference Wang, W., Wang, G., Zhang, J., et al. (2017). Robust weighted least squares method for TOA-based localization under mixed LOS/NLOS conditions. IEEE Communications Letters, 21(10), 2226–2229. Wang, W., Wang, G., Zhang, J., et al. (2017). Robust weighted least squares method for TOA-based localization under mixed LOS/NLOS conditions. IEEE Communications Letters, 21(10), 2226–2229.
19.
go back to reference Pak, J. M., Ahn, C. K., Peng, S., et al. (2017). Distributed hybrid particle/FIR filtering for mitigating NLOS effects in TOA-based localization using wireless sensor networks. IEEE Transactions on Industrial Electronics, 64(6), 5182–5191. Pak, J. M., Ahn, C. K., Peng, S., et al. (2017). Distributed hybrid particle/FIR filtering for mitigating NLOS effects in TOA-based localization using wireless sensor networks. IEEE Transactions on Industrial Electronics, 64(6), 5182–5191.
20.
go back to reference Gao, S., Zhang, F., & Wang, G. (2017). NLOS error mitigation for TOA-based source localization with unknown transmission time. IEEE Sensors Journal, 99, 1–1. Gao, S., Zhang, F., & Wang, G. (2017). NLOS error mitigation for TOA-based source localization with unknown transmission time. IEEE Sensors Journal, 99, 1–1.
21.
go back to reference Abu-Shaban, Z., Zhou, X., & Abhayapala, T. D. (2016). A novel TOA-based mobile localization technique under mixed LOS/NLOS conditions for cellular networks. IEEE Transactions on Vehicular Technology, 65(11), 8841–8853. Abu-Shaban, Z., Zhou, X., & Abhayapala, T. D. (2016). A novel TOA-based mobile localization technique under mixed LOS/NLOS conditions for cellular networks. IEEE Transactions on Vehicular Technology, 65(11), 8841–8853.
22.
go back to reference .Ke M, Xu Y, Anpalagan A, et al. Distributed TOA-based Positioning in Wireless Sensor Networks: A Potential Game Approach[J]. IEEE Communications Letters, 2017, PP(99):1-1. .Ke M, Xu Y, Anpalagan A, et al. Distributed TOA-based Positioning in Wireless Sensor Networks: A Potential Game Approach[J]. IEEE Communications Letters, 2017, PP(99):1-1.
23.
go back to reference .Li Y Y, Qi G Q, Sheng A D. Performance Metric on the Best Achievable Accuracy for Hybrid TOA/AOA Target Localization[J]. IEEE Communications Letters, 2018, PP(99):1-1. .Li Y Y, Qi G Q, Sheng A D. Performance Metric on the Best Achievable Accuracy for Hybrid TOA/AOA Target Localization[J]. IEEE Communications Letters, 2018, PP(99):1-1.
24.
go back to reference Chen, L., Thevenon, P., Seco-Granados, G., et al. (2016). Analysis on the TOA tracking with DVB-T signals for positioning. IEEE Transactions on Broadcasting, 62(4), 957–961. Chen, L., Thevenon, P., Seco-Granados, G., et al. (2016). Analysis on the TOA tracking with DVB-T signals for positioning. IEEE Transactions on Broadcasting, 62(4), 957–961.
25.
go back to reference Nguyen, N. H., & Doğançay, K. (2016). Optimal geometry analysis for multistatic TOA localization. IEEE Transactions on Signal Processing, 64(16), 4180–4193.MathSciNetMATH Nguyen, N. H., & Doğançay, K. (2016). Optimal geometry analysis for multistatic TOA localization. IEEE Transactions on Signal Processing, 64(16), 4180–4193.MathSciNetMATH
26.
go back to reference Ho, K. C., & Chan, Y. T. (2002). Solution and performance analysis of geolocation by TDOA. IEEE Transactions on Aerospace and Electronic Systems, 29(4), 1311–1322. Ho, K. C., & Chan, Y. T. (2002). Solution and performance analysis of geolocation by TDOA. IEEE Transactions on Aerospace and Electronic Systems, 29(4), 1311–1322.
27.
go back to reference Li, X., Guo, F., Yang, L., et al. (2018). Improved solution for geolocating a known altitude source using TDOA and FDOA under random sensor location errors. Electronics Letters, 54(9), 597–599. Li, X., Guo, F., Yang, L., et al. (2018). Improved solution for geolocating a known altitude source using TDOA and FDOA under random sensor location errors. Electronics Letters, 54(9), 597–599.
28.
go back to reference Hmam, H. (2017). Optimal sensor velocity configuration for TDOA-FDOA geolocation. IEEE Transactions on Signal Processing, 99, 1–1.MathSciNetMATH Hmam, H. (2017). Optimal sensor velocity configuration for TDOA-FDOA geolocation. IEEE Transactions on Signal Processing, 99, 1–1.MathSciNetMATH
29.
go back to reference Guo, F., Zhang, Z., & Yang, L. (2016). TDOA/FDOA estimation method based on dechirp. IET Signal Processing, 10(5), 486–492. Guo, F., Zhang, Z., & Yang, L. (2016). TDOA/FDOA estimation method based on dechirp. IET Signal Processing, 10(5), 486–492.
30.
go back to reference Kim, D. G., Park, G. H., Park, J. O., et al. (2018). Computationally efficient TDOA/FDOA estimation for unknown communication signals in electronic warfare systems. IEEE Transactions on Aerospace and Electronic Systems, 99, 1–1. Kim, D. G., Park, G. H., Park, J. O., et al. (2018). Computationally efficient TDOA/FDOA estimation for unknown communication signals in electronic warfare systems. IEEE Transactions on Aerospace and Electronic Systems, 99, 1–1.
31.
go back to reference Wang, Y., & Wu, Y. (2017). An efficient semidefinite relaxation algorithm for moving source localization using TDOA and FDOA measurements. IEEE Communications Letters, 99, 1–1. Wang, Y., & Wu, Y. (2017). An efficient semidefinite relaxation algorithm for moving source localization using TDOA and FDOA measurements. IEEE Communications Letters, 99, 1–1.
32.
go back to reference Wang, G., Cai, S., Li, Y., et al. (2016). A bias-reduced nonlinear WLS method for TDOA/FDOA-based source localization. IEEE Transactions on Vehicular Technology, 65(10), 8603–8615. Wang, G., Cai, S., Li, Y., et al. (2016). A bias-reduced nonlinear WLS method for TDOA/FDOA-based source localization. IEEE Transactions on Vehicular Technology, 65(10), 8603–8615.
33.
go back to reference Noroozi, A., Oveis, A. H., Hosseini, M. R., et al. (2017). Improved algebraic solution for source localization from TDOA and FDOA measurements. IEEE Wireless Communications Letters, 99, 1–1. Noroozi, A., Oveis, A. H., Hosseini, M. R., et al. (2017). Improved algebraic solution for source localization from TDOA and FDOA measurements. IEEE Wireless Communications Letters, 99, 1–1.
34.
go back to reference Qu, X., Xie, L., & Tan, W. (2017). Iterative constrained weighted least squares source localization using TDOA and FDOA measurements. IEEE Transactions on Signal Processing, 99, 1–1.MathSciNetMATH Qu, X., Xie, L., & Tan, W. (2017). Iterative constrained weighted least squares source localization using TDOA and FDOA measurements. IEEE Transactions on Signal Processing, 99, 1–1.MathSciNetMATH
35.
go back to reference Cui, X., Yu, K., & Lu, S. (2018). Approximate closed-form TDOA-based estimator for acoustic direction finding via constrained optimization. IEEE Sensors Journal, 99, 1–1. Cui, X., Yu, K., & Lu, S. (2018). Approximate closed-form TDOA-based estimator for acoustic direction finding via constrained optimization. IEEE Sensors Journal, 99, 1–1.
36.
go back to reference Salari, S., Chan, F., Chan, Y. T., et al. (2018). TDOA estimation with compressive sensing measurements and hadamard matrix. IEEE Transactions on Aerospace and Electronic Systems, 99, 1–1. Salari, S., Chan, F., Chan, Y. T., et al. (2018). TDOA estimation with compressive sensing measurements and hadamard matrix. IEEE Transactions on Aerospace and Electronic Systems, 99, 1–1.
37.
go back to reference Zhu, Y., Deng, B., Jiang, A., et al. (2018). ADMM-based TDOA estimation. IEEE Communications Letters, 99, 1–1. Zhu, Y., Deng, B., Jiang, A., et al. (2018). ADMM-based TDOA estimation. IEEE Communications Letters, 99, 1–1.
38.
go back to reference Cao, H., Chan, Y. T., & So, H. C. (2017). Maximum likelihood TDOA estimation from compressed sensing samples without reconstruction. IEEE Signal Processing Letters, 24(5), 564–568. Cao, H., Chan, Y. T., & So, H. C. (2017). Maximum likelihood TDOA estimation from compressed sensing samples without reconstruction. IEEE Signal Processing Letters, 24(5), 564–568.
39.
go back to reference Zhang, Z., & Zhan, X. (2018). Statistical analysis of spoofing detection based on TDOA. IEEJ Transactions on Electrical and Electronic Engineering, 13(8), 190. Zhang, Z., & Zhan, X. (2018). Statistical analysis of spoofing detection based on TDOA. IEEJ Transactions on Electrical and Electronic Engineering, 13(8), 190.
40.
go back to reference Wang, Y., & Ho, K. C. (2018). Unified near-field and far-field localization for AOA and hybrid AOA-TDOA positionings. IEEE Transactions on Wireless Communications, 17(2), 1242–1254. Wang, Y., & Ho, K. C. (2018). Unified near-field and far-field localization for AOA and hybrid AOA-TDOA positionings. IEEE Transactions on Wireless Communications, 17(2), 1242–1254.
41.
go back to reference Chen, C. Y., & Wu, W. R. (2018). Joint AoD, AoA, and channel estimation for MIMO-OFDM systems. IEEE Transactions on Vehicular Technology, 99, 1–1. Chen, C. Y., & Wu, W. R. (2018). Joint AoD, AoA, and channel estimation for MIMO-OFDM systems. IEEE Transactions on Vehicular Technology, 99, 1–1.
42.
go back to reference Zhu, D., Choi, J., & Heath, R. W. (2017). Two-dimensional AoD and AoA acquisition for wideband mmWave systems with dual-polarized MIMO. IEEE Transactions on Wireless Communications, 99, 1–1. Zhu, D., Choi, J., & Heath, R. W. (2017). Two-dimensional AoD and AoA acquisition for wideband mmWave systems with dual-polarized MIMO. IEEE Transactions on Wireless Communications, 99, 1–1.
43.
go back to reference Zhu, D., Choi, J., & Heath, R. W. (2017). Auxiliary beam pair enabled AoD and AoA estimation in closed-loop large-scale millimeter-wave MIMO systems. IEEE Transactions on Wireless Communications, 16(7), 4770–4785. Zhu, D., Choi, J., & Heath, R. W. (2017). Auxiliary beam pair enabled AoD and AoA estimation in closed-loop large-scale millimeter-wave MIMO systems. IEEE Transactions on Wireless Communications, 16(7), 4770–4785.
44.
go back to reference Amiri, R., Behnia, F., & Zamani, H. (2017). Efficient 3-D positioning using time-delay and AOA measurements in MIMO radar systems. IEEE Communications Letters, 99, 1–1. Amiri, R., Behnia, F., & Zamani, H. (2017). Efficient 3-D positioning using time-delay and AOA measurements in MIMO radar systems. IEEE Communications Letters, 99, 1–1.
45.
go back to reference Noroozi, A., & Sebt, M. A. (2017). Algebraic solution for 3-D TDOA/AOA localization in MIMO passive radar. IET Radar Sonar Navigation, 12(1), 69. Noroozi, A., & Sebt, M. A. (2017). Algebraic solution for 3-D TDOA/AOA localization in MIMO passive radar. IET Radar Sonar Navigation, 12(1), 69.
46.
go back to reference Tomic, S., Beko, M., & Rui, D. (2016). Distributed RSS-AoA based localization with unknown transmit powers. IEEE Wireless Communications Letters, 5(4), 392–395. Tomic, S., Beko, M., & Rui, D. (2016). Distributed RSS-AoA based localization with unknown transmit powers. IEEE Wireless Communications Letters, 5(4), 392–395.
47.
go back to reference Tomic, S., Beko, M., & Rui, D. (2017). 3-D target localization in wireless sensor network using RSS and AoA measurements. IEEE Transactions on Vehicular Technology, 99, 1–1. Tomic, S., Beko, M., & Rui, D. (2017). 3-D target localization in wireless sensor network using RSS and AoA measurements. IEEE Transactions on Vehicular Technology, 99, 1–1.
48.
go back to reference Tomic, S., Beko, M., Rui, D., et al. (2016). A closed-form solution for RSS/AoA target localization by spherical coordinates conversion. IEEE Wireless Communications Letters, 99, 1–1. Tomic, S., Beko, M., Rui, D., et al. (2016). A closed-form solution for RSS/AoA target localization by spherical coordinates conversion. IEEE Wireless Communications Letters, 99, 1–1.
49.
go back to reference Yin, J., Wan, Q., Yang, S., et al. (2015). A simple and accurate TDOA-AOA localization method using two stations. IEEE Signal Processing Letters, 23(1), 144–148. Yin, J., Wan, Q., Yang, S., et al. (2015). A simple and accurate TDOA-AOA localization method using two stations. IEEE Signal Processing Letters, 23(1), 144–148.
50.
go back to reference Chuang, S. F., Wu, W. R., & Liu, Y. T. (2015). High-resolution AoA estimation for hybrid antenna arrays. IEEE Transactions on Antennas and Propagation, 63(7), 2955–2968.MathSciNetMATH Chuang, S. F., Wu, W. R., & Liu, Y. T. (2015). High-resolution AoA estimation for hybrid antenna arrays. IEEE Transactions on Antennas and Propagation, 63(7), 2955–2968.MathSciNetMATH
51.
go back to reference Shao, H. J., Zhang, X. P., & Wang, Z. (2014). Efficient closed-form algorithms for AOA based self-localization of sensor nodes using auxiliary variables. IEEE Transactions on Signal Processing, 62(10), 2580–2594.MathSciNetMATH Shao, H. J., Zhang, X. P., & Wang, Z. (2014). Efficient closed-form algorithms for AOA based self-localization of sensor nodes using auxiliary variables. IEEE Transactions on Signal Processing, 62(10), 2580–2594.MathSciNetMATH
52.
go back to reference Steendam, H. (2018). A 3-D positioning algorithm for AOA-based VLP with an aperture-based receiver. IEEE Journal on Selected Areas in Communications, 36(1), 23–33. Steendam, H. (2018). A 3-D positioning algorithm for AOA-based VLP with an aperture-based receiver. IEEE Journal on Selected Areas in Communications, 36(1), 23–33.
53.
go back to reference Fascista, A., Ciccarese, G., Coluccia, A., et al. (2017). IEEE Signal Processing Letters, 24(99), 1–1. Fascista, A., Ciccarese, G., Coluccia, A., et al. (2017). IEEE Signal Processing Letters, 24(99), 1–1.
54.
go back to reference Tazawa, R., Honma, N., Miura, A., et al. (2018). RSSI-based localization using wireless beacon with three-element array. Ieice Transactions on Communications, 101(2), 67. Tazawa, R., Honma, N., Miura, A., et al. (2018). RSSI-based localization using wireless beacon with three-element array. Ieice Transactions on Communications, 101(2), 67.
55.
go back to reference Xue, W., Qiu, W., Hua, X., et al. (2017). Improved Wi-Fi RSSI measurement for indoor localization. IEEE Sensors Journal, 99, 1–1. Xue, W., Qiu, W., Hua, X., et al. (2017). Improved Wi-Fi RSSI measurement for indoor localization. IEEE Sensors Journal, 99, 1–1.
56.
go back to reference Cho, S. Y. (2016). Measurement error observer-based IMM filtering for mobile node localization using WLAN RSSI measurement. IEEE Sensors Journal, 16(8), 2489–2499. Cho, S. Y. (2016). Measurement error observer-based IMM filtering for mobile node localization using WLAN RSSI measurement. IEEE Sensors Journal, 16(8), 2489–2499.
57.
go back to reference Luo, Q., Peng, Y., Li, J., et al. (2016). RSSI-based localization through uncertain data mapping for wireless sensor networks. IEEE Sensors Journal, 16(9), 3155–3162. Luo, Q., Peng, Y., Li, J., et al. (2016). RSSI-based localization through uncertain data mapping for wireless sensor networks. IEEE Sensors Journal, 16(9), 3155–3162.
58.
go back to reference Pathak, P. H., Feng, X., Hu, P., et al. (2015). Visible light communication, networking, and sensing: A survey, potential and challenges. IEEE Communications Surveys & Tutorials, 17(4), 2047–2077. Pathak, P. H., Feng, X., Hu, P., et al. (2015). Visible light communication, networking, and sensing: A survey, potential and challenges. IEEE Communications Surveys & Tutorials, 17(4), 2047–2077.
59.
go back to reference Bianchi, V., Ciampolini, P., & Munari, I. D. (2018). RSSI-based indoor localization and identification for ZigBee wireless sensor networks in smart homes. IEEE Transactions on Instrumentation and Measurement, 99, 1–10. Bianchi, V., Ciampolini, P., & Munari, I. D. (2018). RSSI-based indoor localization and identification for ZigBee wireless sensor networks in smart homes. IEEE Transactions on Instrumentation and Measurement, 99, 1–10.
60.
go back to reference Buffi, A., Michel, A., Nepa, P., et al. (2018). RSSI measurements for RFID tag classification in smart storage systems. IEEE Transactions on Instrumentation and Measurement, 99, 1–11. Buffi, A., Michel, A., Nepa, P., et al. (2018). RSSI measurements for RFID tag classification in smart storage systems. IEEE Transactions on Instrumentation and Measurement, 99, 1–11.
61.
go back to reference Booranawong, A., Jindapetch, N., & Saito, H. (2018). A system for detection and tracking of human movements using RSSI signals. IEEE Sensors Journal, 99, 1–1. Booranawong, A., Jindapetch, N., & Saito, H. (2018). A system for detection and tracking of human movements using RSSI signals. IEEE Sensors Journal, 99, 1–1.
62.
go back to reference Mahjoub, H. N., Tahmasbi-Sarvestani, A., Gani, S. M. O., et al. (2018). Composite α − μ based DSRC channel model using large data set of RSSI measurements. IEEE Transactions on Intelligent Transportation Systems, 99, 1–13. Mahjoub, H. N., Tahmasbi-Sarvestani, A., Gani, S. M. O., et al. (2018). Composite α − μ based DSRC channel model using large data set of RSSI measurements. IEEE Transactions on Intelligent Transportation Systems, 99, 1–13.
63.
go back to reference Xu, Z., Wang, R., Yue, X., et al. (2018). FaceME: Face-to-machine proximity estimation based on RSSI difference for mobile industrial human machine interaction. IEEE Transactions on Industrial Informatics, 99, 1–1. Xu, Z., Wang, R., Yue, X., et al. (2018). FaceME: Face-to-machine proximity estimation based on RSSI difference for mobile industrial human machine interaction. IEEE Transactions on Industrial Informatics, 99, 1–1.
64.
go back to reference Abouzar, P., Michelson, D. G., & Hamdi, M. (2016). RSSI-based distributed self-localization for wireless sensor networks used in precision agriculture. IEEE Transactions on Wireless Communications, 15(10), 6638–6650. Abouzar, P., Michelson, D. G., & Hamdi, M. (2016). RSSI-based distributed self-localization for wireless sensor networks used in precision agriculture. IEEE Transactions on Wireless Communications, 15(10), 6638–6650.
65.
go back to reference Yiu, S., Dashti, M., Claussen, H., et al. (2017). Wireless RSSI fingerprinting localization. Signal Processing, 131, 235–244. Yiu, S., Dashti, M., Claussen, H., et al. (2017). Wireless RSSI fingerprinting localization. Signal Processing, 131, 235–244.
66.
go back to reference Chen, W., Wang, W., Li, Q., et al. (2016). A crowd-sourcing indoor localization algorithm via optical camera on a smartphone assisted by Wi-Fi fingerprint RSSI. Sensors, 16(3), 410. Chen, W., Wang, W., Li, Q., et al. (2016). A crowd-sourcing indoor localization algorithm via optical camera on a smartphone assisted by Wi-Fi fingerprint RSSI. Sensors, 16(3), 410.
67.
go back to reference Jiang, R., & Yang, Z. (2016). An improved centroid localization algorithm based on iterative computation for wireless sensor network. Acta Physica Sinica, 65(3), 100. Jiang, R., & Yang, Z. (2016). An improved centroid localization algorithm based on iterative computation for wireless sensor network. Acta Physica Sinica, 65(3), 100.
68.
go back to reference Zhao, J., & Liu, Y. (2013). An improved Weighted Centroid Localization algorithm based on difference of estimated distances for Wireless Sensor Networks. Telecommunication Systems, 53(1), 25–31.MathSciNet Zhao, J., & Liu, Y. (2013). An improved Weighted Centroid Localization algorithm based on difference of estimated distances for Wireless Sensor Networks. Telecommunication Systems, 53(1), 25–31.MathSciNet
69.
go back to reference Chaudhari, S., & Cabric, D. (2016). Cyclic weighted centroid algorithm for transmitter localization in the presence of interference. IEEE Transactions on Cognitive Communications & Networking, 2(2), 162–177. Chaudhari, S., & Cabric, D. (2016). Cyclic weighted centroid algorithm for transmitter localization in the presence of interference. IEEE Transactions on Cognitive Communications & Networking, 2(2), 162–177.
70.
go back to reference Linda, O., & Manic, M. (2012). Monotone centroid flow algorithm for type reduction of general type-2 fuzzy sets. IEEE Transactions on Fuzzy Systems, 20(5), 805–819. Linda, O., & Manic, M. (2012). Monotone centroid flow algorithm for type reduction of general type-2 fuzzy sets. IEEE Transactions on Fuzzy Systems, 20(5), 805–819.
71.
go back to reference Zhai, D., & Mendel, J. M. (2012). Enhanced centroid-flow algorithm for computing the centroid of general type-2 fuzzy sets. IEEE Transactions on Fuzzy Systems, 20(5), 939–956. Zhai, D., & Mendel, J. M. (2012). Enhanced centroid-flow algorithm for computing the centroid of general type-2 fuzzy sets. IEEE Transactions on Fuzzy Systems, 20(5), 939–956.
72.
go back to reference Yu, J., Liang, D., Gong, X., et al. (2019). Impact localization for composite plate based on Detrended Fluctuation Analysis and centroid localization algorithm using FBG sensors. Optik, 167, 50. Yu, J., Liang, D., Gong, X., et al. (2019). Impact localization for composite plate based on Detrended Fluctuation Analysis and centroid localization algorithm using FBG sensors. Optik, 167, 50.
73.
go back to reference Ngoc, M. T., & Park, D. C. (2018). Centroid neural network with pairwise constraints for semi-supervised learning. Neural Processing Letters, 10, 1–27. Ngoc, M. T., & Park, D. C. (2018). Centroid neural network with pairwise constraints for semi-supervised learning. Neural Processing Letters, 10, 1–27.
74.
go back to reference Tomic, S., & Mezei, I. (2016). Improvements of DV-Hop localization algorithm for wireless sensor networks. Telecommunication Systems, 61(1), 93–106. Tomic, S., & Mezei, I. (2016). Improvements of DV-Hop localization algorithm for wireless sensor networks. Telecommunication Systems, 61(1), 93–106.
75.
go back to reference Mehrabi, M., Taheri, H., & Taghdiri, P. (2017). An improved DV-Hop localization algorithm based on evolutionary algorithms. Telecommunication Systems, 64(4), 1–9. Mehrabi, M., Taheri, H., & Taghdiri, P. (2017). An improved DV-Hop localization algorithm based on evolutionary algorithms. Telecommunication Systems, 64(4), 1–9.
76.
go back to reference Kaur, A., Kumar, P., & Gupta, G. P. (2018). Nature inspired algorithm-based improved variants of DV-Hop algorithm for randomly deployed 2D and 3D wireless sensor networks. Wireless Personal Communications, 1, 1–16. Kaur, A., Kumar, P., & Gupta, G. P. (2018). Nature inspired algorithm-based improved variants of DV-Hop algorithm for randomly deployed 2D and 3D wireless sensor networks. Wireless Personal Communications, 1, 1–16.
77.
go back to reference Zhou, C., Yang, Y., & Wang, Y. (2018). DV-Hop localization algorithm based on bacterial foraging optimization for wireless multimedia sensor networks. Multimedia Tools and Applications, 16, 1–11. Zhou, C., Yang, Y., & Wang, Y. (2018). DV-Hop localization algorithm based on bacterial foraging optimization for wireless multimedia sensor networks. Multimedia Tools and Applications, 16, 1–11.
78.
go back to reference Sharma, G., & Kumar, A. (2018). Improved DV-Hop localization algorithm using teaching learning based optimization for wireless sensor networks. Telecommunication Systems, 67(8), 1–16. Sharma, G., & Kumar, A. (2018). Improved DV-Hop localization algorithm using teaching learning based optimization for wireless sensor networks. Telecommunication Systems, 67(8), 1–16.
79.
go back to reference Liu, Y., Chen, J., & Xu, Z. (2017). Improved DV-hop localization algorithm based on bat algorithm in wireless sensor networks. Ksii Transactions on Internet & Information Systems, 75, 11. Liu, Y., Chen, J., & Xu, Z. (2017). Improved DV-hop localization algorithm based on bat algorithm in wireless sensor networks. Ksii Transactions on Internet & Information Systems, 75, 11.
80.
go back to reference Cheikhrouhou, O. M. G. B., & Alroobaea, R. (2018). A hybrid DV-hop algorithm using RSSI for localization in large-scale wireless sensor networks. Sensors, 18(5), 1469. Cheikhrouhou, O. M. G. B., & Alroobaea, R. (2018). A hybrid DV-hop algorithm using RSSI for localization in large-scale wireless sensor networks. Sensors, 18(5), 1469.
81.
go back to reference Gui, L., Xiao, F. U., Zhang, Y., et al. (2018). DV-Hop localization with protocol sequence based access. IEEE Transactions on Vehicular Technology, 1(1), 20. Gui, L., Xiao, F. U., Zhang, Y., et al. (2018). DV-Hop localization with protocol sequence based access. IEEE Transactions on Vehicular Technology, 1(1), 20.
82.
go back to reference Gui, L., Zhang, X., Ding, Q., et al. (2017). Reference anchor selection and global optimized solution for DV-hop localization in wireless sensor networks. Wireless Personal Communications, 96(4), 5995–6005. Gui, L., Zhang, X., Ding, Q., et al. (2017). Reference anchor selection and global optimized solution for DV-hop localization in wireless sensor networks. Wireless Personal Communications, 96(4), 5995–6005.
83.
go back to reference Zhao, W., Su, S., & Shao, F. (2017). Improved DV-hop algorithm using locally weighted linear regression in anisotropic wireless sensor networks. Wireless Personal Communications, 98(4), 1–19. Zhao, W., Su, S., & Shao, F. (2017). Improved DV-hop algorithm using locally weighted linear regression in anisotropic wireless sensor networks. Wireless Personal Communications, 98(4), 1–19.
84.
go back to reference Shahzad, F., Shaltami, T., & Shakshukhi, E. (2017). DV-maxHop: A fast and accurate range-free localization algorithm for anisotropic wireless networks. IEEE Transactions on Mobile Computing, 16(9), 2494–2505. Shahzad, F., Shaltami, T., & Shakshukhi, E. (2017). DV-maxHop: A fast and accurate range-free localization algorithm for anisotropic wireless networks. IEEE Transactions on Mobile Computing, 16(9), 2494–2505.
85.
go back to reference Fan, L. H., Qiu, X. H., & Tang, Y. B. (2007). Discussion on self-location algorithm for wireless sensor networks. Telecommunications for Electric Power System, 10, 92. Fan, L. H., Qiu, X. H., & Tang, Y. B. (2007). Discussion on self-location algorithm for wireless sensor networks. Telecommunications for Electric Power System, 10, 92.
86.
go back to reference Years, I. R. (2015). Amorphous localization algorithm based on BP artificial neural network. International Journal of Distributed Sensor Networks, 2015, 6. Years, I. R. (2015). Amorphous localization algorithm based on BP artificial neural network. International Journal of Distributed Sensor Networks, 2015, 6.
87.
go back to reference Shen, S., Yang, B., Qian, K., et al. (2016). An improved amorphous localization algorithm for wireless sensor networks. In International conference on NETWORKING and network applications (pp. 69–72). IEEE. Shen, S., Yang, B., Qian, K., et al. (2016). An improved amorphous localization algorithm for wireless sensor networks. In International conference on NETWORKING and network applications (pp. 69–72). IEEE.
88.
go back to reference Shen, S., Qian, K., Yang, B., et al. (2018). An improved amorphous algorithm in wireless sensor network based on approximate equilateral triangle beacon selection. In International conference on NETWORKING and network applications (pp. 54–60). IEEE. Shen, S., Qian, K., Yang, B., et al. (2018). An improved amorphous algorithm in wireless sensor network based on approximate equilateral triangle beacon selection. In International conference on NETWORKING and network applications (pp. 54–60). IEEE.
89.
go back to reference Zhang, R., Claussen, H., Haas, H., et al. (2016). Energy efficient visible light communications relying on amorphous cells. IEEE Journal on Selected Areas in Communications, 34(4), 894–906. Zhang, R., Claussen, H., Haas, H., et al. (2016). Energy efficient visible light communications relying on amorphous cells. IEEE Journal on Selected Areas in Communications, 34(4), 894–906.
90.
go back to reference Feng, S., Li, X., Zhang, R., et al. (2016). Hybrid positioning for the amorphous-cell assisted user-centric visible light downlink. IEEE Photonics Journal, 4(3), 100–108. Feng, S., Li, X., Zhang, R., et al. (2016). Hybrid positioning for the amorphous-cell assisted user-centric visible light downlink. IEEE Photonics Journal, 4(3), 100–108.
91.
go back to reference Li, X., Chen, L., Wang, J., et al. (2015). Fuzzy system and Improved APIT (FIAPIT) combined range-free localization method for WSN. Ksii Transactions on Internet and Information Systems, 9(7), 2414–2434. Li, X., Chen, L., Wang, J., et al. (2015). Fuzzy system and Improved APIT (FIAPIT) combined range-free localization method for WSN. Ksii Transactions on Internet and Information Systems, 9(7), 2414–2434.
92.
go back to reference Yuan, Y., Huo, L., Wang, Z., et al. (2018). Secure APIT localization scheme against sybil attacks in distributed wireless sensor networks. IEEE Access, 6, 27629–27636. Yuan, Y., Huo, L., Wang, Z., et al. (2018). Secure APIT localization scheme against sybil attacks in distributed wireless sensor networks. IEEE Access, 6, 27629–27636.
93.
go back to reference Liu, Z., Feng, X., Zhang, J., et al. (2016). An improved GPSR algorithm based on energy gradient and APIT grid. Journal of Sensors, 2016(2), 4027–4032. Liu, Z., Feng, X., Zhang, J., et al. (2016). An improved GPSR algorithm based on energy gradient and APIT grid. Journal of Sensors, 2016(2), 4027–4032.
94.
go back to reference Li, P., \& Zhang, W. (2010). Based on the cyclic refinement APIT localization algorithm for wireless sensor networks. In Control conference (pp. 4753–4756). IEEE. Li, P., \& Zhang, W. (2010). Based on the cyclic refinement APIT localization algorithm for wireless sensor networks. In Control conference (pp. 4753–4756). IEEE.
95.
go back to reference Chen, B., Sun, J., Xu, W. B., et al. (2012). A mixed localization algorithm based on RSSI and APIT with fitness analysis and optimization. In International symposium on distributed computing and applications to business, engineering and science (pp. 164–168). IEEE. Chen, B., Sun, J., Xu, W. B., et al. (2012). A mixed localization algorithm based on RSSI and APIT with fitness analysis and optimization. In International symposium on distributed computing and applications to business, engineering and science (pp. 164–168). IEEE.
96.
go back to reference Jain, S., Singh, A., Kaur, A., et al. (2017). Improved APIT localization algorithm in wireless sensor networks. In International conference on signal processing, computing and control (pp. 77–81). Jain, S., Singh, A., Kaur, A., et al. (2017). Improved APIT localization algorithm in wireless sensor networks. In International conference on signal processing, computing and control (pp. 77–81).
97.
go back to reference Xiong, X., & Yan, C. (2014). Three-dimensional localization algorithm of APIT based on fermat-point divided for wireless sensor networks. In Seventh international symposium on computational intelligence and design (pp. 521–524). IEEE Computer Society. Xiong, X., & Yan, C. (2014). Three-dimensional localization algorithm of APIT based on fermat-point divided for wireless sensor networks. In Seventh international symposium on computational intelligence and design (pp. 521–524). IEEE Computer Society.
98.
go back to reference Wen, W., Dong, Z., Chen, G., et al. (2017). Energy efficient data collection scheme in mobile wireless sensor networks. In International conference on advanced information NETWORKING and applications workshops (pp. 226–230). Wen, W., Dong, Z., Chen, G., et al. (2017). Energy efficient data collection scheme in mobile wireless sensor networks. In International conference on advanced information NETWORKING and applications workshops (pp. 226–230).
99.
go back to reference Liang, J., Shao, J., Xu, Y., et al. Sensor network localization in constrained 3-D spaces. In IEEE international conference on mechatronics and automation (pp. 49–54). IEEE. Liang, J., Shao, J., Xu, Y., et al. Sensor network localization in constrained 3-D spaces. In IEEE international conference on mechatronics and automation (pp. 49–54). IEEE.
100.
go back to reference Zhang, P., Lu, J., & Wang, Q. (2016). Performance bounds for relative configuration and global transformation in cooperative localization. Ict Express, 2(1), 14–18. Zhang, P., Lu, J., & Wang, Q. (2016). Performance bounds for relative configuration and global transformation in cooperative localization. Ict Express, 2(1), 14–18.
101.
go back to reference Tang, T., Liu, H., Song, H., et al. (2016). Support vector machine based range-free localization algorithm in wireless sensor network. In International conference on machine learning and intelligent communications (pp. 150–158). Springer International Publishing. Tang, T., Liu, H., Song, H., et al. (2016). Support vector machine based range-free localization algorithm in wireless sensor network. In International conference on machine learning and intelligent communications (pp. 150–158). Springer International Publishing.
Metadata
Title
Review on Positioning Technology of Wireless Sensor Networks
Authors
Mao Li
Feng Jiang
Cong Pei
Publication date
10-08-2020
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 3/2020
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07667-7

Other articles of this Issue 3/2020

Wireless Personal Communications 3/2020 Go to the issue