Skip to main content
Erschienen in: Wireless Personal Communications 3/2020

10.08.2020

Review on Positioning Technology of Wireless Sensor Networks

verfasst von: Mao Li, Feng Jiang, Cong Pei

Erschienen in: Wireless Personal Communications | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the large-scale application of wireless sensor network, the position information of sensor nodes is more and more important. The position information of the unknown nodes are mainly depended on the beacon node the in wireless sensor network. First, the concept and characteristics of wireless sensor networks of the positioning technologies are briefly described. Then, the calculation methods of existing node positioning technologies are introduced. Next, the wireless sensors are described in detail from two aspects: range-based and range-free. Finally, summarizes the possible defects of positioning technology and looks forward to the future development of the node positioning technology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fei, Z., Li, B., Yang, S., et al. (2016). A survey of multi-objective optimization in wireless sensor networks: Metrics, algorithms and open problems. IEEE Communications Surveys and Tutorials, 99, 1–1. Fei, Z., Li, B., Yang, S., et al. (2016). A survey of multi-objective optimization in wireless sensor networks: Metrics, algorithms and open problems. IEEE Communications Surveys and Tutorials, 99, 1–1.
2.
Zurück zum Zitat Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.
3.
Zurück zum Zitat Sohrabi, K., Gao, J., Ailawadhi, V., et al. (2000). Protocols for self-organization of a wireless sensor network. IEEE Personal Communications, 7(5), 16–27. Sohrabi, K., Gao, J., Ailawadhi, V., et al. (2000). Protocols for self-organization of a wireless sensor network. IEEE Personal Communications, 7(5), 16–27.
4.
Zurück zum Zitat Mao, G., Fidan, B., & Anderson, B. D. O. (2007). Wireless sensor network localization techniques. Computer Networks, 51(10), 2529–2553.MATH Mao, G., Fidan, B., & Anderson, B. D. O. (2007). Wireless sensor network localization techniques. Computer Networks, 51(10), 2529–2553.MATH
5.
Zurück zum Zitat Yang, Z., & Liu, Y. (2010). Quality of trilateration: Confidence-based iterative localization. IEEE Transactions on Parallel and Distributed Systems, 21(5), 631–640. Yang, Z., & Liu, Y. (2010). Quality of trilateration: Confidence-based iterative localization. IEEE Transactions on Parallel and Distributed Systems, 21(5), 631–640.
6.
Zurück zum Zitat Keppel, E. (2010). Approximating complex surfaces by triangulation of contour lines. IBM Journal of Research and Development, 19(1), 2–11.MathSciNetMATH Keppel, E. (2010). Approximating complex surfaces by triangulation of contour lines. IBM Journal of Research and Development, 19(1), 2–11.MathSciNetMATH
7.
Zurück zum Zitat Bialer, O., Dan, R., & Weiss, A. J. (2013). Maximum-likelihood direct position estimation in dense multipath. IEEE Transactions on Vehicular Technology, 62(5), 2069–2079. Bialer, O., Dan, R., & Weiss, A. J. (2013). Maximum-likelihood direct position estimation in dense multipath. IEEE Transactions on Vehicular Technology, 62(5), 2069–2079.
8.
Zurück zum Zitat Shah, S. F. A., Srirangarajan, S., & Tewfik, A. H. (2010). Implementation of a directional beacon-based position location algorithm in a signal processing framework. IEEE Transactions on Wireless Communications, 9(3), 1044–1053. Shah, S. F. A., Srirangarajan, S., & Tewfik, A. H. (2010). Implementation of a directional beacon-based position location algorithm in a signal processing framework. IEEE Transactions on Wireless Communications, 9(3), 1044–1053.
9.
Zurück zum Zitat Chan, F. K. W., & So, H. C. (2009). Accurate distributed range-based positioning algorithm for wireless sensor networks. IEEE Transactions on Signal Processing, 57(10), 4100–4105.MathSciNetMATH Chan, F. K. W., & So, H. C. (2009). Accurate distributed range-based positioning algorithm for wireless sensor networks. IEEE Transactions on Signal Processing, 57(10), 4100–4105.MathSciNetMATH
10.
Zurück zum Zitat Alavi, B., & Pahlavan, K. (2006). Modeling of the TOA-based distance measurement error using UWB indoor radio measurements. IEEE Communications Letters, 10(4), 275–277. Alavi, B., & Pahlavan, K. (2006). Modeling of the TOA-based distance measurement error using UWB indoor radio measurements. IEEE Communications Letters, 10(4), 275–277.
11.
Zurück zum Zitat Cong, L., & Zhuang, W. (2001). Non-line-of-sight error mitigation in TDOA mobile location. Proceedings of IEEE Globecom Telecommunications, 1(2), 560–573. Cong, L., & Zhuang, W. (2001). Non-line-of-sight error mitigation in TDOA mobile location. Proceedings of IEEE Globecom Telecommunications, 1(2), 560–573.
12.
Zurück zum Zitat Niculescu, D., & Nath, B. (2003). Ad hoc positioning system (APS) using AOA. In Joint conference of the IEEE computer and communications. IEEE societies. IEEE (Vol. 3, pp. 1734–1743). Niculescu, D., & Nath, B. (2003). Ad hoc positioning system (APS) using AOA. In Joint conference of the IEEE computer and communications. IEEE societies. IEEE (Vol. 3, pp. 1734–1743).
13.
Zurück zum Zitat Paul, A. S., & Wan, E. A. (2009). RSSI-based indoor localization and tracking using sigma-point Kalman Smoothers. IEEE Journal of Selected Topics in Signal Processing, 3(5), 860–873. Paul, A. S., & Wan, E. A. (2009). RSSI-based indoor localization and tracking using sigma-point Kalman Smoothers. IEEE Journal of Selected Topics in Signal Processing, 3(5), 860–873.
14.
Zurück zum Zitat Li, X., & Pahlavan, K. (2004). Super-resolution TOA estimation with diversity for indoor geolocation. IEEE Transactions on Wireless Communications, 3(1), 224–234. Li, X., & Pahlavan, K. (2004). Super-resolution TOA estimation with diversity for indoor geolocation. IEEE Transactions on Wireless Communications, 3(1), 224–234.
15.
Zurück zum Zitat Tomic, S., & Beko, M. (2018). Exact Robust solution to TW-ToA-based target localization problem with clock imperfections. IEEE Signal Processing Letters, 25(4), 531–535. Tomic, S., & Beko, M. (2018). Exact Robust solution to TW-ToA-based target localization problem with clock imperfections. IEEE Signal Processing Letters, 25(4), 531–535.
16.
Zurück zum Zitat Wang, Y., Ma, S., & Chen, C. L. P. (2014). TOA-based passive localization in quasi-synchronous networks. IEEE Communications Letters, 18(4), 592–595. Wang, Y., Ma, S., & Chen, C. L. P. (2014). TOA-based passive localization in quasi-synchronous networks. IEEE Communications Letters, 18(4), 592–595.
17.
Zurück zum Zitat Tomic, S., Beko, M., Rui, D., et al. (2017). A robust bisection-based estimator for TOA-based target localization in NLOS environments. IEEE Communications Letters, 99, 1–1. Tomic, S., Beko, M., Rui, D., et al. (2017). A robust bisection-based estimator for TOA-based target localization in NLOS environments. IEEE Communications Letters, 99, 1–1.
18.
Zurück zum Zitat Wang, W., Wang, G., Zhang, J., et al. (2017). Robust weighted least squares method for TOA-based localization under mixed LOS/NLOS conditions. IEEE Communications Letters, 21(10), 2226–2229. Wang, W., Wang, G., Zhang, J., et al. (2017). Robust weighted least squares method for TOA-based localization under mixed LOS/NLOS conditions. IEEE Communications Letters, 21(10), 2226–2229.
19.
Zurück zum Zitat Pak, J. M., Ahn, C. K., Peng, S., et al. (2017). Distributed hybrid particle/FIR filtering for mitigating NLOS effects in TOA-based localization using wireless sensor networks. IEEE Transactions on Industrial Electronics, 64(6), 5182–5191. Pak, J. M., Ahn, C. K., Peng, S., et al. (2017). Distributed hybrid particle/FIR filtering for mitigating NLOS effects in TOA-based localization using wireless sensor networks. IEEE Transactions on Industrial Electronics, 64(6), 5182–5191.
20.
Zurück zum Zitat Gao, S., Zhang, F., & Wang, G. (2017). NLOS error mitigation for TOA-based source localization with unknown transmission time. IEEE Sensors Journal, 99, 1–1. Gao, S., Zhang, F., & Wang, G. (2017). NLOS error mitigation for TOA-based source localization with unknown transmission time. IEEE Sensors Journal, 99, 1–1.
21.
Zurück zum Zitat Abu-Shaban, Z., Zhou, X., & Abhayapala, T. D. (2016). A novel TOA-based mobile localization technique under mixed LOS/NLOS conditions for cellular networks. IEEE Transactions on Vehicular Technology, 65(11), 8841–8853. Abu-Shaban, Z., Zhou, X., & Abhayapala, T. D. (2016). A novel TOA-based mobile localization technique under mixed LOS/NLOS conditions for cellular networks. IEEE Transactions on Vehicular Technology, 65(11), 8841–8853.
22.
Zurück zum Zitat .Ke M, Xu Y, Anpalagan A, et al. Distributed TOA-based Positioning in Wireless Sensor Networks: A Potential Game Approach[J]. IEEE Communications Letters, 2017, PP(99):1-1. .Ke M, Xu Y, Anpalagan A, et al. Distributed TOA-based Positioning in Wireless Sensor Networks: A Potential Game Approach[J]. IEEE Communications Letters, 2017, PP(99):1-1.
23.
Zurück zum Zitat .Li Y Y, Qi G Q, Sheng A D. Performance Metric on the Best Achievable Accuracy for Hybrid TOA/AOA Target Localization[J]. IEEE Communications Letters, 2018, PP(99):1-1. .Li Y Y, Qi G Q, Sheng A D. Performance Metric on the Best Achievable Accuracy for Hybrid TOA/AOA Target Localization[J]. IEEE Communications Letters, 2018, PP(99):1-1.
24.
Zurück zum Zitat Chen, L., Thevenon, P., Seco-Granados, G., et al. (2016). Analysis on the TOA tracking with DVB-T signals for positioning. IEEE Transactions on Broadcasting, 62(4), 957–961. Chen, L., Thevenon, P., Seco-Granados, G., et al. (2016). Analysis on the TOA tracking with DVB-T signals for positioning. IEEE Transactions on Broadcasting, 62(4), 957–961.
25.
Zurück zum Zitat Nguyen, N. H., & Doğançay, K. (2016). Optimal geometry analysis for multistatic TOA localization. IEEE Transactions on Signal Processing, 64(16), 4180–4193.MathSciNetMATH Nguyen, N. H., & Doğançay, K. (2016). Optimal geometry analysis for multistatic TOA localization. IEEE Transactions on Signal Processing, 64(16), 4180–4193.MathSciNetMATH
26.
Zurück zum Zitat Ho, K. C., & Chan, Y. T. (2002). Solution and performance analysis of geolocation by TDOA. IEEE Transactions on Aerospace and Electronic Systems, 29(4), 1311–1322. Ho, K. C., & Chan, Y. T. (2002). Solution and performance analysis of geolocation by TDOA. IEEE Transactions on Aerospace and Electronic Systems, 29(4), 1311–1322.
27.
Zurück zum Zitat Li, X., Guo, F., Yang, L., et al. (2018). Improved solution for geolocating a known altitude source using TDOA and FDOA under random sensor location errors. Electronics Letters, 54(9), 597–599. Li, X., Guo, F., Yang, L., et al. (2018). Improved solution for geolocating a known altitude source using TDOA and FDOA under random sensor location errors. Electronics Letters, 54(9), 597–599.
28.
Zurück zum Zitat Hmam, H. (2017). Optimal sensor velocity configuration for TDOA-FDOA geolocation. IEEE Transactions on Signal Processing, 99, 1–1.MathSciNetMATH Hmam, H. (2017). Optimal sensor velocity configuration for TDOA-FDOA geolocation. IEEE Transactions on Signal Processing, 99, 1–1.MathSciNetMATH
29.
Zurück zum Zitat Guo, F., Zhang, Z., & Yang, L. (2016). TDOA/FDOA estimation method based on dechirp. IET Signal Processing, 10(5), 486–492. Guo, F., Zhang, Z., & Yang, L. (2016). TDOA/FDOA estimation method based on dechirp. IET Signal Processing, 10(5), 486–492.
30.
Zurück zum Zitat Kim, D. G., Park, G. H., Park, J. O., et al. (2018). Computationally efficient TDOA/FDOA estimation for unknown communication signals in electronic warfare systems. IEEE Transactions on Aerospace and Electronic Systems, 99, 1–1. Kim, D. G., Park, G. H., Park, J. O., et al. (2018). Computationally efficient TDOA/FDOA estimation for unknown communication signals in electronic warfare systems. IEEE Transactions on Aerospace and Electronic Systems, 99, 1–1.
31.
Zurück zum Zitat Wang, Y., & Wu, Y. (2017). An efficient semidefinite relaxation algorithm for moving source localization using TDOA and FDOA measurements. IEEE Communications Letters, 99, 1–1. Wang, Y., & Wu, Y. (2017). An efficient semidefinite relaxation algorithm for moving source localization using TDOA and FDOA measurements. IEEE Communications Letters, 99, 1–1.
32.
Zurück zum Zitat Wang, G., Cai, S., Li, Y., et al. (2016). A bias-reduced nonlinear WLS method for TDOA/FDOA-based source localization. IEEE Transactions on Vehicular Technology, 65(10), 8603–8615. Wang, G., Cai, S., Li, Y., et al. (2016). A bias-reduced nonlinear WLS method for TDOA/FDOA-based source localization. IEEE Transactions on Vehicular Technology, 65(10), 8603–8615.
33.
Zurück zum Zitat Noroozi, A., Oveis, A. H., Hosseini, M. R., et al. (2017). Improved algebraic solution for source localization from TDOA and FDOA measurements. IEEE Wireless Communications Letters, 99, 1–1. Noroozi, A., Oveis, A. H., Hosseini, M. R., et al. (2017). Improved algebraic solution for source localization from TDOA and FDOA measurements. IEEE Wireless Communications Letters, 99, 1–1.
34.
Zurück zum Zitat Qu, X., Xie, L., & Tan, W. (2017). Iterative constrained weighted least squares source localization using TDOA and FDOA measurements. IEEE Transactions on Signal Processing, 99, 1–1.MathSciNetMATH Qu, X., Xie, L., & Tan, W. (2017). Iterative constrained weighted least squares source localization using TDOA and FDOA measurements. IEEE Transactions on Signal Processing, 99, 1–1.MathSciNetMATH
35.
Zurück zum Zitat Cui, X., Yu, K., & Lu, S. (2018). Approximate closed-form TDOA-based estimator for acoustic direction finding via constrained optimization. IEEE Sensors Journal, 99, 1–1. Cui, X., Yu, K., & Lu, S. (2018). Approximate closed-form TDOA-based estimator for acoustic direction finding via constrained optimization. IEEE Sensors Journal, 99, 1–1.
36.
Zurück zum Zitat Salari, S., Chan, F., Chan, Y. T., et al. (2018). TDOA estimation with compressive sensing measurements and hadamard matrix. IEEE Transactions on Aerospace and Electronic Systems, 99, 1–1. Salari, S., Chan, F., Chan, Y. T., et al. (2018). TDOA estimation with compressive sensing measurements and hadamard matrix. IEEE Transactions on Aerospace and Electronic Systems, 99, 1–1.
37.
Zurück zum Zitat Zhu, Y., Deng, B., Jiang, A., et al. (2018). ADMM-based TDOA estimation. IEEE Communications Letters, 99, 1–1. Zhu, Y., Deng, B., Jiang, A., et al. (2018). ADMM-based TDOA estimation. IEEE Communications Letters, 99, 1–1.
38.
Zurück zum Zitat Cao, H., Chan, Y. T., & So, H. C. (2017). Maximum likelihood TDOA estimation from compressed sensing samples without reconstruction. IEEE Signal Processing Letters, 24(5), 564–568. Cao, H., Chan, Y. T., & So, H. C. (2017). Maximum likelihood TDOA estimation from compressed sensing samples without reconstruction. IEEE Signal Processing Letters, 24(5), 564–568.
39.
Zurück zum Zitat Zhang, Z., & Zhan, X. (2018). Statistical analysis of spoofing detection based on TDOA. IEEJ Transactions on Electrical and Electronic Engineering, 13(8), 190. Zhang, Z., & Zhan, X. (2018). Statistical analysis of spoofing detection based on TDOA. IEEJ Transactions on Electrical and Electronic Engineering, 13(8), 190.
40.
Zurück zum Zitat Wang, Y., & Ho, K. C. (2018). Unified near-field and far-field localization for AOA and hybrid AOA-TDOA positionings. IEEE Transactions on Wireless Communications, 17(2), 1242–1254. Wang, Y., & Ho, K. C. (2018). Unified near-field and far-field localization for AOA and hybrid AOA-TDOA positionings. IEEE Transactions on Wireless Communications, 17(2), 1242–1254.
41.
Zurück zum Zitat Chen, C. Y., & Wu, W. R. (2018). Joint AoD, AoA, and channel estimation for MIMO-OFDM systems. IEEE Transactions on Vehicular Technology, 99, 1–1. Chen, C. Y., & Wu, W. R. (2018). Joint AoD, AoA, and channel estimation for MIMO-OFDM systems. IEEE Transactions on Vehicular Technology, 99, 1–1.
42.
Zurück zum Zitat Zhu, D., Choi, J., & Heath, R. W. (2017). Two-dimensional AoD and AoA acquisition for wideband mmWave systems with dual-polarized MIMO. IEEE Transactions on Wireless Communications, 99, 1–1. Zhu, D., Choi, J., & Heath, R. W. (2017). Two-dimensional AoD and AoA acquisition for wideband mmWave systems with dual-polarized MIMO. IEEE Transactions on Wireless Communications, 99, 1–1.
43.
Zurück zum Zitat Zhu, D., Choi, J., & Heath, R. W. (2017). Auxiliary beam pair enabled AoD and AoA estimation in closed-loop large-scale millimeter-wave MIMO systems. IEEE Transactions on Wireless Communications, 16(7), 4770–4785. Zhu, D., Choi, J., & Heath, R. W. (2017). Auxiliary beam pair enabled AoD and AoA estimation in closed-loop large-scale millimeter-wave MIMO systems. IEEE Transactions on Wireless Communications, 16(7), 4770–4785.
44.
Zurück zum Zitat Amiri, R., Behnia, F., & Zamani, H. (2017). Efficient 3-D positioning using time-delay and AOA measurements in MIMO radar systems. IEEE Communications Letters, 99, 1–1. Amiri, R., Behnia, F., & Zamani, H. (2017). Efficient 3-D positioning using time-delay and AOA measurements in MIMO radar systems. IEEE Communications Letters, 99, 1–1.
45.
Zurück zum Zitat Noroozi, A., & Sebt, M. A. (2017). Algebraic solution for 3-D TDOA/AOA localization in MIMO passive radar. IET Radar Sonar Navigation, 12(1), 69. Noroozi, A., & Sebt, M. A. (2017). Algebraic solution for 3-D TDOA/AOA localization in MIMO passive radar. IET Radar Sonar Navigation, 12(1), 69.
46.
Zurück zum Zitat Tomic, S., Beko, M., & Rui, D. (2016). Distributed RSS-AoA based localization with unknown transmit powers. IEEE Wireless Communications Letters, 5(4), 392–395. Tomic, S., Beko, M., & Rui, D. (2016). Distributed RSS-AoA based localization with unknown transmit powers. IEEE Wireless Communications Letters, 5(4), 392–395.
47.
Zurück zum Zitat Tomic, S., Beko, M., & Rui, D. (2017). 3-D target localization in wireless sensor network using RSS and AoA measurements. IEEE Transactions on Vehicular Technology, 99, 1–1. Tomic, S., Beko, M., & Rui, D. (2017). 3-D target localization in wireless sensor network using RSS and AoA measurements. IEEE Transactions on Vehicular Technology, 99, 1–1.
48.
Zurück zum Zitat Tomic, S., Beko, M., Rui, D., et al. (2016). A closed-form solution for RSS/AoA target localization by spherical coordinates conversion. IEEE Wireless Communications Letters, 99, 1–1. Tomic, S., Beko, M., Rui, D., et al. (2016). A closed-form solution for RSS/AoA target localization by spherical coordinates conversion. IEEE Wireless Communications Letters, 99, 1–1.
49.
Zurück zum Zitat Yin, J., Wan, Q., Yang, S., et al. (2015). A simple and accurate TDOA-AOA localization method using two stations. IEEE Signal Processing Letters, 23(1), 144–148. Yin, J., Wan, Q., Yang, S., et al. (2015). A simple and accurate TDOA-AOA localization method using two stations. IEEE Signal Processing Letters, 23(1), 144–148.
50.
Zurück zum Zitat Chuang, S. F., Wu, W. R., & Liu, Y. T. (2015). High-resolution AoA estimation for hybrid antenna arrays. IEEE Transactions on Antennas and Propagation, 63(7), 2955–2968.MathSciNetMATH Chuang, S. F., Wu, W. R., & Liu, Y. T. (2015). High-resolution AoA estimation for hybrid antenna arrays. IEEE Transactions on Antennas and Propagation, 63(7), 2955–2968.MathSciNetMATH
51.
Zurück zum Zitat Shao, H. J., Zhang, X. P., & Wang, Z. (2014). Efficient closed-form algorithms for AOA based self-localization of sensor nodes using auxiliary variables. IEEE Transactions on Signal Processing, 62(10), 2580–2594.MathSciNetMATH Shao, H. J., Zhang, X. P., & Wang, Z. (2014). Efficient closed-form algorithms for AOA based self-localization of sensor nodes using auxiliary variables. IEEE Transactions on Signal Processing, 62(10), 2580–2594.MathSciNetMATH
52.
Zurück zum Zitat Steendam, H. (2018). A 3-D positioning algorithm for AOA-based VLP with an aperture-based receiver. IEEE Journal on Selected Areas in Communications, 36(1), 23–33. Steendam, H. (2018). A 3-D positioning algorithm for AOA-based VLP with an aperture-based receiver. IEEE Journal on Selected Areas in Communications, 36(1), 23–33.
53.
Zurück zum Zitat Fascista, A., Ciccarese, G., Coluccia, A., et al. (2017). IEEE Signal Processing Letters, 24(99), 1–1. Fascista, A., Ciccarese, G., Coluccia, A., et al. (2017). IEEE Signal Processing Letters, 24(99), 1–1.
54.
Zurück zum Zitat Tazawa, R., Honma, N., Miura, A., et al. (2018). RSSI-based localization using wireless beacon with three-element array. Ieice Transactions on Communications, 101(2), 67. Tazawa, R., Honma, N., Miura, A., et al. (2018). RSSI-based localization using wireless beacon with three-element array. Ieice Transactions on Communications, 101(2), 67.
55.
Zurück zum Zitat Xue, W., Qiu, W., Hua, X., et al. (2017). Improved Wi-Fi RSSI measurement for indoor localization. IEEE Sensors Journal, 99, 1–1. Xue, W., Qiu, W., Hua, X., et al. (2017). Improved Wi-Fi RSSI measurement for indoor localization. IEEE Sensors Journal, 99, 1–1.
56.
Zurück zum Zitat Cho, S. Y. (2016). Measurement error observer-based IMM filtering for mobile node localization using WLAN RSSI measurement. IEEE Sensors Journal, 16(8), 2489–2499. Cho, S. Y. (2016). Measurement error observer-based IMM filtering for mobile node localization using WLAN RSSI measurement. IEEE Sensors Journal, 16(8), 2489–2499.
57.
Zurück zum Zitat Luo, Q., Peng, Y., Li, J., et al. (2016). RSSI-based localization through uncertain data mapping for wireless sensor networks. IEEE Sensors Journal, 16(9), 3155–3162. Luo, Q., Peng, Y., Li, J., et al. (2016). RSSI-based localization through uncertain data mapping for wireless sensor networks. IEEE Sensors Journal, 16(9), 3155–3162.
58.
Zurück zum Zitat Pathak, P. H., Feng, X., Hu, P., et al. (2015). Visible light communication, networking, and sensing: A survey, potential and challenges. IEEE Communications Surveys & Tutorials, 17(4), 2047–2077. Pathak, P. H., Feng, X., Hu, P., et al. (2015). Visible light communication, networking, and sensing: A survey, potential and challenges. IEEE Communications Surveys & Tutorials, 17(4), 2047–2077.
59.
Zurück zum Zitat Bianchi, V., Ciampolini, P., & Munari, I. D. (2018). RSSI-based indoor localization and identification for ZigBee wireless sensor networks in smart homes. IEEE Transactions on Instrumentation and Measurement, 99, 1–10. Bianchi, V., Ciampolini, P., & Munari, I. D. (2018). RSSI-based indoor localization and identification for ZigBee wireless sensor networks in smart homes. IEEE Transactions on Instrumentation and Measurement, 99, 1–10.
60.
Zurück zum Zitat Buffi, A., Michel, A., Nepa, P., et al. (2018). RSSI measurements for RFID tag classification in smart storage systems. IEEE Transactions on Instrumentation and Measurement, 99, 1–11. Buffi, A., Michel, A., Nepa, P., et al. (2018). RSSI measurements for RFID tag classification in smart storage systems. IEEE Transactions on Instrumentation and Measurement, 99, 1–11.
61.
Zurück zum Zitat Booranawong, A., Jindapetch, N., & Saito, H. (2018). A system for detection and tracking of human movements using RSSI signals. IEEE Sensors Journal, 99, 1–1. Booranawong, A., Jindapetch, N., & Saito, H. (2018). A system for detection and tracking of human movements using RSSI signals. IEEE Sensors Journal, 99, 1–1.
62.
Zurück zum Zitat Mahjoub, H. N., Tahmasbi-Sarvestani, A., Gani, S. M. O., et al. (2018). Composite α − μ based DSRC channel model using large data set of RSSI measurements. IEEE Transactions on Intelligent Transportation Systems, 99, 1–13. Mahjoub, H. N., Tahmasbi-Sarvestani, A., Gani, S. M. O., et al. (2018). Composite α − μ based DSRC channel model using large data set of RSSI measurements. IEEE Transactions on Intelligent Transportation Systems, 99, 1–13.
63.
Zurück zum Zitat Xu, Z., Wang, R., Yue, X., et al. (2018). FaceME: Face-to-machine proximity estimation based on RSSI difference for mobile industrial human machine interaction. IEEE Transactions on Industrial Informatics, 99, 1–1. Xu, Z., Wang, R., Yue, X., et al. (2018). FaceME: Face-to-machine proximity estimation based on RSSI difference for mobile industrial human machine interaction. IEEE Transactions on Industrial Informatics, 99, 1–1.
64.
Zurück zum Zitat Abouzar, P., Michelson, D. G., & Hamdi, M. (2016). RSSI-based distributed self-localization for wireless sensor networks used in precision agriculture. IEEE Transactions on Wireless Communications, 15(10), 6638–6650. Abouzar, P., Michelson, D. G., & Hamdi, M. (2016). RSSI-based distributed self-localization for wireless sensor networks used in precision agriculture. IEEE Transactions on Wireless Communications, 15(10), 6638–6650.
65.
Zurück zum Zitat Yiu, S., Dashti, M., Claussen, H., et al. (2017). Wireless RSSI fingerprinting localization. Signal Processing, 131, 235–244. Yiu, S., Dashti, M., Claussen, H., et al. (2017). Wireless RSSI fingerprinting localization. Signal Processing, 131, 235–244.
66.
Zurück zum Zitat Chen, W., Wang, W., Li, Q., et al. (2016). A crowd-sourcing indoor localization algorithm via optical camera on a smartphone assisted by Wi-Fi fingerprint RSSI. Sensors, 16(3), 410. Chen, W., Wang, W., Li, Q., et al. (2016). A crowd-sourcing indoor localization algorithm via optical camera on a smartphone assisted by Wi-Fi fingerprint RSSI. Sensors, 16(3), 410.
67.
Zurück zum Zitat Jiang, R., & Yang, Z. (2016). An improved centroid localization algorithm based on iterative computation for wireless sensor network. Acta Physica Sinica, 65(3), 100. Jiang, R., & Yang, Z. (2016). An improved centroid localization algorithm based on iterative computation for wireless sensor network. Acta Physica Sinica, 65(3), 100.
68.
Zurück zum Zitat Zhao, J., & Liu, Y. (2013). An improved Weighted Centroid Localization algorithm based on difference of estimated distances for Wireless Sensor Networks. Telecommunication Systems, 53(1), 25–31.MathSciNet Zhao, J., & Liu, Y. (2013). An improved Weighted Centroid Localization algorithm based on difference of estimated distances for Wireless Sensor Networks. Telecommunication Systems, 53(1), 25–31.MathSciNet
69.
Zurück zum Zitat Chaudhari, S., & Cabric, D. (2016). Cyclic weighted centroid algorithm for transmitter localization in the presence of interference. IEEE Transactions on Cognitive Communications & Networking, 2(2), 162–177. Chaudhari, S., & Cabric, D. (2016). Cyclic weighted centroid algorithm for transmitter localization in the presence of interference. IEEE Transactions on Cognitive Communications & Networking, 2(2), 162–177.
70.
Zurück zum Zitat Linda, O., & Manic, M. (2012). Monotone centroid flow algorithm for type reduction of general type-2 fuzzy sets. IEEE Transactions on Fuzzy Systems, 20(5), 805–819. Linda, O., & Manic, M. (2012). Monotone centroid flow algorithm for type reduction of general type-2 fuzzy sets. IEEE Transactions on Fuzzy Systems, 20(5), 805–819.
71.
Zurück zum Zitat Zhai, D., & Mendel, J. M. (2012). Enhanced centroid-flow algorithm for computing the centroid of general type-2 fuzzy sets. IEEE Transactions on Fuzzy Systems, 20(5), 939–956. Zhai, D., & Mendel, J. M. (2012). Enhanced centroid-flow algorithm for computing the centroid of general type-2 fuzzy sets. IEEE Transactions on Fuzzy Systems, 20(5), 939–956.
72.
Zurück zum Zitat Yu, J., Liang, D., Gong, X., et al. (2019). Impact localization for composite plate based on Detrended Fluctuation Analysis and centroid localization algorithm using FBG sensors. Optik, 167, 50. Yu, J., Liang, D., Gong, X., et al. (2019). Impact localization for composite plate based on Detrended Fluctuation Analysis and centroid localization algorithm using FBG sensors. Optik, 167, 50.
73.
Zurück zum Zitat Ngoc, M. T., & Park, D. C. (2018). Centroid neural network with pairwise constraints for semi-supervised learning. Neural Processing Letters, 10, 1–27. Ngoc, M. T., & Park, D. C. (2018). Centroid neural network with pairwise constraints for semi-supervised learning. Neural Processing Letters, 10, 1–27.
74.
Zurück zum Zitat Tomic, S., & Mezei, I. (2016). Improvements of DV-Hop localization algorithm for wireless sensor networks. Telecommunication Systems, 61(1), 93–106. Tomic, S., & Mezei, I. (2016). Improvements of DV-Hop localization algorithm for wireless sensor networks. Telecommunication Systems, 61(1), 93–106.
75.
Zurück zum Zitat Mehrabi, M., Taheri, H., & Taghdiri, P. (2017). An improved DV-Hop localization algorithm based on evolutionary algorithms. Telecommunication Systems, 64(4), 1–9. Mehrabi, M., Taheri, H., & Taghdiri, P. (2017). An improved DV-Hop localization algorithm based on evolutionary algorithms. Telecommunication Systems, 64(4), 1–9.
76.
Zurück zum Zitat Kaur, A., Kumar, P., & Gupta, G. P. (2018). Nature inspired algorithm-based improved variants of DV-Hop algorithm for randomly deployed 2D and 3D wireless sensor networks. Wireless Personal Communications, 1, 1–16. Kaur, A., Kumar, P., & Gupta, G. P. (2018). Nature inspired algorithm-based improved variants of DV-Hop algorithm for randomly deployed 2D and 3D wireless sensor networks. Wireless Personal Communications, 1, 1–16.
77.
Zurück zum Zitat Zhou, C., Yang, Y., & Wang, Y. (2018). DV-Hop localization algorithm based on bacterial foraging optimization for wireless multimedia sensor networks. Multimedia Tools and Applications, 16, 1–11. Zhou, C., Yang, Y., & Wang, Y. (2018). DV-Hop localization algorithm based on bacterial foraging optimization for wireless multimedia sensor networks. Multimedia Tools and Applications, 16, 1–11.
78.
Zurück zum Zitat Sharma, G., & Kumar, A. (2018). Improved DV-Hop localization algorithm using teaching learning based optimization for wireless sensor networks. Telecommunication Systems, 67(8), 1–16. Sharma, G., & Kumar, A. (2018). Improved DV-Hop localization algorithm using teaching learning based optimization for wireless sensor networks. Telecommunication Systems, 67(8), 1–16.
79.
Zurück zum Zitat Liu, Y., Chen, J., & Xu, Z. (2017). Improved DV-hop localization algorithm based on bat algorithm in wireless sensor networks. Ksii Transactions on Internet & Information Systems, 75, 11. Liu, Y., Chen, J., & Xu, Z. (2017). Improved DV-hop localization algorithm based on bat algorithm in wireless sensor networks. Ksii Transactions on Internet & Information Systems, 75, 11.
80.
Zurück zum Zitat Cheikhrouhou, O. M. G. B., & Alroobaea, R. (2018). A hybrid DV-hop algorithm using RSSI for localization in large-scale wireless sensor networks. Sensors, 18(5), 1469. Cheikhrouhou, O. M. G. B., & Alroobaea, R. (2018). A hybrid DV-hop algorithm using RSSI for localization in large-scale wireless sensor networks. Sensors, 18(5), 1469.
81.
Zurück zum Zitat Gui, L., Xiao, F. U., Zhang, Y., et al. (2018). DV-Hop localization with protocol sequence based access. IEEE Transactions on Vehicular Technology, 1(1), 20. Gui, L., Xiao, F. U., Zhang, Y., et al. (2018). DV-Hop localization with protocol sequence based access. IEEE Transactions on Vehicular Technology, 1(1), 20.
82.
Zurück zum Zitat Gui, L., Zhang, X., Ding, Q., et al. (2017). Reference anchor selection and global optimized solution for DV-hop localization in wireless sensor networks. Wireless Personal Communications, 96(4), 5995–6005. Gui, L., Zhang, X., Ding, Q., et al. (2017). Reference anchor selection and global optimized solution for DV-hop localization in wireless sensor networks. Wireless Personal Communications, 96(4), 5995–6005.
83.
Zurück zum Zitat Zhao, W., Su, S., & Shao, F. (2017). Improved DV-hop algorithm using locally weighted linear regression in anisotropic wireless sensor networks. Wireless Personal Communications, 98(4), 1–19. Zhao, W., Su, S., & Shao, F. (2017). Improved DV-hop algorithm using locally weighted linear regression in anisotropic wireless sensor networks. Wireless Personal Communications, 98(4), 1–19.
84.
Zurück zum Zitat Shahzad, F., Shaltami, T., & Shakshukhi, E. (2017). DV-maxHop: A fast and accurate range-free localization algorithm for anisotropic wireless networks. IEEE Transactions on Mobile Computing, 16(9), 2494–2505. Shahzad, F., Shaltami, T., & Shakshukhi, E. (2017). DV-maxHop: A fast and accurate range-free localization algorithm for anisotropic wireless networks. IEEE Transactions on Mobile Computing, 16(9), 2494–2505.
85.
Zurück zum Zitat Fan, L. H., Qiu, X. H., & Tang, Y. B. (2007). Discussion on self-location algorithm for wireless sensor networks. Telecommunications for Electric Power System, 10, 92. Fan, L. H., Qiu, X. H., & Tang, Y. B. (2007). Discussion on self-location algorithm for wireless sensor networks. Telecommunications for Electric Power System, 10, 92.
86.
Zurück zum Zitat Years, I. R. (2015). Amorphous localization algorithm based on BP artificial neural network. International Journal of Distributed Sensor Networks, 2015, 6. Years, I. R. (2015). Amorphous localization algorithm based on BP artificial neural network. International Journal of Distributed Sensor Networks, 2015, 6.
87.
Zurück zum Zitat Shen, S., Yang, B., Qian, K., et al. (2016). An improved amorphous localization algorithm for wireless sensor networks. In International conference on NETWORKING and network applications (pp. 69–72). IEEE. Shen, S., Yang, B., Qian, K., et al. (2016). An improved amorphous localization algorithm for wireless sensor networks. In International conference on NETWORKING and network applications (pp. 69–72). IEEE.
88.
Zurück zum Zitat Shen, S., Qian, K., Yang, B., et al. (2018). An improved amorphous algorithm in wireless sensor network based on approximate equilateral triangle beacon selection. In International conference on NETWORKING and network applications (pp. 54–60). IEEE. Shen, S., Qian, K., Yang, B., et al. (2018). An improved amorphous algorithm in wireless sensor network based on approximate equilateral triangle beacon selection. In International conference on NETWORKING and network applications (pp. 54–60). IEEE.
89.
Zurück zum Zitat Zhang, R., Claussen, H., Haas, H., et al. (2016). Energy efficient visible light communications relying on amorphous cells. IEEE Journal on Selected Areas in Communications, 34(4), 894–906. Zhang, R., Claussen, H., Haas, H., et al. (2016). Energy efficient visible light communications relying on amorphous cells. IEEE Journal on Selected Areas in Communications, 34(4), 894–906.
90.
Zurück zum Zitat Feng, S., Li, X., Zhang, R., et al. (2016). Hybrid positioning for the amorphous-cell assisted user-centric visible light downlink. IEEE Photonics Journal, 4(3), 100–108. Feng, S., Li, X., Zhang, R., et al. (2016). Hybrid positioning for the amorphous-cell assisted user-centric visible light downlink. IEEE Photonics Journal, 4(3), 100–108.
91.
Zurück zum Zitat Li, X., Chen, L., Wang, J., et al. (2015). Fuzzy system and Improved APIT (FIAPIT) combined range-free localization method for WSN. Ksii Transactions on Internet and Information Systems, 9(7), 2414–2434. Li, X., Chen, L., Wang, J., et al. (2015). Fuzzy system and Improved APIT (FIAPIT) combined range-free localization method for WSN. Ksii Transactions on Internet and Information Systems, 9(7), 2414–2434.
92.
Zurück zum Zitat Yuan, Y., Huo, L., Wang, Z., et al. (2018). Secure APIT localization scheme against sybil attacks in distributed wireless sensor networks. IEEE Access, 6, 27629–27636. Yuan, Y., Huo, L., Wang, Z., et al. (2018). Secure APIT localization scheme against sybil attacks in distributed wireless sensor networks. IEEE Access, 6, 27629–27636.
93.
Zurück zum Zitat Liu, Z., Feng, X., Zhang, J., et al. (2016). An improved GPSR algorithm based on energy gradient and APIT grid. Journal of Sensors, 2016(2), 4027–4032. Liu, Z., Feng, X., Zhang, J., et al. (2016). An improved GPSR algorithm based on energy gradient and APIT grid. Journal of Sensors, 2016(2), 4027–4032.
94.
Zurück zum Zitat Li, P., \& Zhang, W. (2010). Based on the cyclic refinement APIT localization algorithm for wireless sensor networks. In Control conference (pp. 4753–4756). IEEE. Li, P., \& Zhang, W. (2010). Based on the cyclic refinement APIT localization algorithm for wireless sensor networks. In Control conference (pp. 4753–4756). IEEE.
95.
Zurück zum Zitat Chen, B., Sun, J., Xu, W. B., et al. (2012). A mixed localization algorithm based on RSSI and APIT with fitness analysis and optimization. In International symposium on distributed computing and applications to business, engineering and science (pp. 164–168). IEEE. Chen, B., Sun, J., Xu, W. B., et al. (2012). A mixed localization algorithm based on RSSI and APIT with fitness analysis and optimization. In International symposium on distributed computing and applications to business, engineering and science (pp. 164–168). IEEE.
96.
Zurück zum Zitat Jain, S., Singh, A., Kaur, A., et al. (2017). Improved APIT localization algorithm in wireless sensor networks. In International conference on signal processing, computing and control (pp. 77–81). Jain, S., Singh, A., Kaur, A., et al. (2017). Improved APIT localization algorithm in wireless sensor networks. In International conference on signal processing, computing and control (pp. 77–81).
97.
Zurück zum Zitat Xiong, X., & Yan, C. (2014). Three-dimensional localization algorithm of APIT based on fermat-point divided for wireless sensor networks. In Seventh international symposium on computational intelligence and design (pp. 521–524). IEEE Computer Society. Xiong, X., & Yan, C. (2014). Three-dimensional localization algorithm of APIT based on fermat-point divided for wireless sensor networks. In Seventh international symposium on computational intelligence and design (pp. 521–524). IEEE Computer Society.
98.
Zurück zum Zitat Wen, W., Dong, Z., Chen, G., et al. (2017). Energy efficient data collection scheme in mobile wireless sensor networks. In International conference on advanced information NETWORKING and applications workshops (pp. 226–230). Wen, W., Dong, Z., Chen, G., et al. (2017). Energy efficient data collection scheme in mobile wireless sensor networks. In International conference on advanced information NETWORKING and applications workshops (pp. 226–230).
99.
Zurück zum Zitat Liang, J., Shao, J., Xu, Y., et al. Sensor network localization in constrained 3-D spaces. In IEEE international conference on mechatronics and automation (pp. 49–54). IEEE. Liang, J., Shao, J., Xu, Y., et al. Sensor network localization in constrained 3-D spaces. In IEEE international conference on mechatronics and automation (pp. 49–54). IEEE.
100.
Zurück zum Zitat Zhang, P., Lu, J., & Wang, Q. (2016). Performance bounds for relative configuration and global transformation in cooperative localization. Ict Express, 2(1), 14–18. Zhang, P., Lu, J., & Wang, Q. (2016). Performance bounds for relative configuration and global transformation in cooperative localization. Ict Express, 2(1), 14–18.
101.
Zurück zum Zitat Tang, T., Liu, H., Song, H., et al. (2016). Support vector machine based range-free localization algorithm in wireless sensor network. In International conference on machine learning and intelligent communications (pp. 150–158). Springer International Publishing. Tang, T., Liu, H., Song, H., et al. (2016). Support vector machine based range-free localization algorithm in wireless sensor network. In International conference on machine learning and intelligent communications (pp. 150–158). Springer International Publishing.
Metadaten
Titel
Review on Positioning Technology of Wireless Sensor Networks
verfasst von
Mao Li
Feng Jiang
Cong Pei
Publikationsdatum
10.08.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07667-7

Weitere Artikel der Ausgabe 3/2020

Wireless Personal Communications 3/2020 Zur Ausgabe

Neuer Inhalt