Skip to main content
Top

2024 | OriginalPaper | Chapter

Revisiting Link Prediction with the Dowker Complex

Authors : Jae Won Choi, Yuzhou Chen, José Frías, Joel Castillo, Yulia Gel

Published in: Advances in Knowledge Discovery and Data Mining

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We propose a novel method to study properties of graph-structured data by means of a geometric construction called Dowker complex. We study this simplicial complex through the use of persistent homology, which has shown to be a prominent tool to uncover relevant geometric and topological information in data. A positively weighted graph induces a distance in its sets of vertices. A classical approach in persistent homology is to construct a filtered Vietoris-Rips complex with vertices on the vertices of the graph. However, when the size of the set of vertices of the graph is large, the obtained simplicial complex may be computationally hard to handle. A solution The Dowker complex is constructed on a sample in the set of vertices of the graph called landmarks. A way to guaranty sparsity and proximity of the set of landmarks to all the vertices of the graph is by considering \(\epsilon \)-nets. We provide theoretical proofs of the stability of the Dowker construction and comparison with the Vietorips-Rips construction. We perform experiments showing that the Dowker complex based neural networks model performs good with respect to baseline methods in tasks such as link prediction and resilience to attacks.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Agarwal, S., Branson, K., Belongie, S.: Higher order learning with graphs. In: ICML, pp. 17–24 (2006) Agarwal, S., Branson, K., Belongie, S.: Higher order learning with graphs. In: ICML, pp. 17–24 (2006)
3.
go back to reference Arafat, N.A., Basu, D., Bressan, S.: \(\epsilon \)-net induced lazy witness complexes on graphs (2020) Arafat, N.A., Basu, D., Bressan, S.: \(\epsilon \)-net induced lazy witness complexes on graphs (2020)
4.
go back to reference Benson, A.R., Abebe, R., Schaub, M.T., Jadbabaie, A., Kleinberg, J.: Simplicial closure and higher-order link prediction. PNAS 115(48), E11221–E11230 (2018)CrossRef Benson, A.R., Abebe, R., Schaub, M.T., Jadbabaie, A., Kleinberg, J.: Simplicial closure and higher-order link prediction. PNAS 115(48), E11221–E11230 (2018)CrossRef
5.
go back to reference Bodnar, C., et al.: Weisfeiler and Lehman go topological: message passing simplicial networks. In: ICML, pp. 1026–1037 (2021) Bodnar, C., et al.: Weisfeiler and Lehman go topological: message passing simplicial networks. In: ICML, pp. 1026–1037 (2021)
6.
go back to reference Boissonnat, J.D., Guibas, L., Oudot, S.: Manifold reconstruction in arbitrary dimensions using witness complexes. In: SoCG, pp. 194–203 (2007) Boissonnat, J.D., Guibas, L., Oudot, S.: Manifold reconstruction in arbitrary dimensions using witness complexes. In: SoCG, pp. 194–203 (2007)
7.
go back to reference Chami, I., Ying, R., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks (2019) Chami, I., Ying, R., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks (2019)
8.
go back to reference Chazal, F., De Silva, V., Oudot, S.: Persistence stability for geometric complexes. Geom. Dedicata. 173(1), 193–214 (2014)MathSciNetCrossRef Chazal, F., De Silva, V., Oudot, S.: Persistence stability for geometric complexes. Geom. Dedicata. 173(1), 193–214 (2014)MathSciNetCrossRef
9.
go back to reference Chazal, F., Michel, B.: An introduction to topological data analysis: fundamental and practical aspects for data scientists. Front. Artif. Intell 4 (2021) Chazal, F., Michel, B.: An introduction to topological data analysis: fundamental and practical aspects for data scientists. Front. Artif. Intell 4 (2021)
10.
go back to reference Chen, Y., Gel, Y.R., Poor, H.V.: BScNets: block simplicial complex neural networks. Proc. AAAI Conf. Artif. Intell. 36(6), 6333–6341 (2022) Chen, Y., Gel, Y.R., Poor, H.V.: BScNets: block simplicial complex neural networks. Proc. AAAI Conf. Artif. Intell. 36(6), 6333–6341 (2022)
11.
go back to reference Chen, Y., Gel, Y.R., Marathe, M.V., Poor, H.V.: A simplicial epidemic model for COVID-19 spread analysis. Proc. Natl. Acad. Sci. 121(1), e2313171120 (2024)CrossRef Chen, Y., Gel, Y.R., Marathe, M.V., Poor, H.V.: A simplicial epidemic model for COVID-19 spread analysis. Proc. Natl. Acad. Sci. 121(1), e2313171120 (2024)CrossRef
12.
go back to reference Chen, Y., Jacob, R.A., Gel, Y.R., Zhang, J., Poor, H.V.: Learning power grid outages with higher-order topological neural networks. IEEE Trans. Power Syst. 39(1), 720–732 (2024) Chen, Y., Jacob, R.A., Gel, Y.R., Zhang, J., Poor, H.V.: Learning power grid outages with higher-order topological neural networks. IEEE Trans. Power Syst. 39(1), 720–732 (2024)
13.
go back to reference Chen, Y., Jiang, T., Gel, Y.R.: H\(^2\)-nets: hyper-Hdge convolutional neural networks for time-series forecasting. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds.) ECML PKDD 2023. LNCS, vol. 14713, pp. 271–289. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43424-2_17 Chen, Y., Jiang, T., Gel, Y.R.: H\(^2\)-nets: hyper-Hdge convolutional neural networks for time-series forecasting. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds.) ECML PKDD 2023. LNCS, vol. 14713, pp. 271–289. Springer, Cham (2023). https://​doi.​org/​10.​1007/​978-3-031-43424-2_​17
14.
go back to reference Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. In: SoCG, pp. 263–271 (2005) Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. In: SoCG, pp. 263–271 (2005)
15.
go back to reference De Silva, V., Carlsson, G.: Topological estimation using witness complexes. In: PBG, pp. 157–166 (2004) De Silva, V., Carlsson, G.: Topological estimation using witness complexes. In: PBG, pp. 157–166 (2004)
16.
go back to reference Dey, T.K., Fan, F., Wang, Y.: Graph induced complex on point data. In: SoCG, pp. 107–116 (2013) Dey, T.K., Fan, F., Wang, Y.: Graph induced complex on point data. In: SoCG, pp. 107–116 (2013)
17.
go back to reference Ebli, S., Defferrard, M., Spreemann, G.: Simplicial neural networks. In: NeurIPS 2020 Workshop on TDA and Beyond (2020) Ebli, S., Defferrard, M., Spreemann, G.: Simplicial neural networks. In: NeurIPS 2020 Workshop on TDA and Beyond (2020)
18.
go back to reference Hensel, F., Moor, M., Rieck, B.: A survey of topological machine learning methods. Front. Artif. Intell. 4, 52 (2021)CrossRef Hensel, F., Moor, M., Rieck, B.: A survey of topological machine learning methods. Front. Artif. Intell. 4, 52 (2021)CrossRef
19.
go back to reference Johnson, J.L., Goldring, T.: Discrete Hodge theory on graphs: a tutorial. Comput. Sci. Eng. 15(5), 42–55 (2013) Johnson, J.L., Goldring, T.: Discrete Hodge theory on graphs: a tutorial. Comput. Sci. Eng. 15(5), 42–55 (2013)
20.
go back to reference Kipf, T.N., Welling, M.: Variational graph auto-encoders (2016) Kipf, T.N., Welling, M.: Variational graph auto-encoders (2016)
21.
go back to reference Kipf, T.N., Welling, M.: Semi-supervised classification with gcns. In: ICLR (2017) Kipf, T.N., Welling, M.: Semi-supervised classification with gcns. In: ICLR (2017)
22.
go back to reference Liu, X., Feng, H., Wu, J., Xia, K.: Dowker complex based machine learning (DCML) models for protein-ligand binding affinity prediction. PLoS Comp. Biol. 18(4), e1009943 (2022)CrossRef Liu, X., Feng, H., Wu, J., Xia, K.: Dowker complex based machine learning (DCML) models for protein-ligand binding affinity prediction. PLoS Comp. Biol. 18(4), e1009943 (2022)CrossRef
23.
go back to reference Mavromatis, C., Karypis, G.: Graph InfoClust: maximizing coarse-grain mutual information in graphs. In: Karlapalem, K., et al. (eds.) Advances in Knowledge Discovery and Data Mining. PAKDD 2021, Part I. LNCS, vol. 12712, pp. 541–553. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75762-5_43 Mavromatis, C., Karypis, G.: Graph InfoClust: maximizing coarse-grain mutual information in graphs. In: Karlapalem, K., et al. (eds.) Advances in Knowledge Discovery and Data Mining. PAKDD 2021, Part I. LNCS, vol. 12712, pp. 541–553. Springer, Cham (2021). https://​doi.​org/​10.​1007/​978-3-030-75762-5_​43
24.
go back to reference Pei, H., Wei, B., Chang, K.C.C., Lei, Y., Yang, B.: Geom-GCN: geometric graph convolutional networks. In: ICLR (2019) Pei, H., Wei, B., Chang, K.C.C., Lei, Y., Yang, B.: Geom-GCN: geometric graph convolutional networks. In: ICLR (2019)
25.
go back to reference Roddenberry, T.M., Glaze, N., Segarra, S.: Principled simplicial neural networks for trajectory prediction. In: ICML, pp. 9020–9029 (2021) Roddenberry, T.M., Glaze, N., Segarra, S.: Principled simplicial neural networks for trajectory prediction. In: ICML, pp. 9020–9029 (2021)
26.
go back to reference Schaub, M.T., Benson, A.R., Horn, P., Lippner, G., Jadbabaie, A.: Random walks on simplicial complexes and the normalized Hodge 1-laplacian. SIAM Rev. 62(2), 353–391 (2020)MathSciNetCrossRef Schaub, M.T., Benson, A.R., Horn, P., Lippner, G., Jadbabaie, A.: Random walks on simplicial complexes and the normalized Hodge 1-laplacian. SIAM Rev. 62(2), 353–391 (2020)MathSciNetCrossRef
27.
go back to reference Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93–93 (2008) Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93–93 (2008)
28.
go back to reference Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR (2018) Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR (2018)
29.
go back to reference Yan, Z., Ma, T., Gao, L., Tang, Z., Chen, C.: Link prediction with persistent homology: an interactive view (2021) Yan, Z., Ma, T., Gao, L., Tang, Z., Chen, C.: Link prediction with persistent homology: an interactive view (2021)
30.
go back to reference Zhang, M., Chen, Y.: Link prediction based on graph neural networks (2018) Zhang, M., Chen, Y.: Link prediction based on graph neural networks (2018)
Metadata
Title
Revisiting Link Prediction with the Dowker Complex
Authors
Jae Won Choi
Yuzhou Chen
José Frías
Joel Castillo
Yulia Gel
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-2253-2_33

Premium Partner