Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 1/2019

19-11-2018 | Original Article

Robotically assisted long bone biopsy under MRI: cadaver study results

Authors: Sunghwan Lim, Karun Sharma, Pan Li, Doru Petrisor, Stanley Fricke, Dan Stoianovici, Kevin Cleary

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Rationale and objectives

We have designed and constructed an MR-safe robot made entirely of nonmetallic components with pneumatic actuators and optical encoders. The robot was developed to enable bone biopsies to be performed under magnetic resonance imaging (MRI) guidance in pediatric patients. The purpose of this study was to show the feasibility of using the robot for biopsy of the femur and tibia in a cadaver leg. Our long-term goal is to eliminate radiation exposure during bone biopsy procedures and provide more timely and accurate diagnosis for children with bone cancers and bone infections.

Methods

The MR-safe robot was mounted on the MRI table. A cadaver leg was procured from an anatomy supply house and placed on the MRI table. All required hospital precautions for infection control were taken. A total of 10 biopsy targets were sampled using MRI guidance: five from the femur and five from the tibia. A handheld, commercially available battery-powered bone drill was used to facilitate drilling through the cortex. After the study, the leg was scanned with CT to better visualize and document the bone biopsy sites. Both the MRI and CT images were used to analyze the results.

Results

All of the targets were successfully reached with an average targeting accuracy of 1.43 mm. A workflow analysis showed the average time for the first biopsy was 41 min including robot setup time and 22 min for each additional biopsy including the time for the repeat MRI scan used to confirm accurate targeting. The robot was shown to be MRI transparent, as no image quality degradation due to the use of the robot was detected.

Conclusion

The results showed the feasibility of using an MR-safe robotic system to assist the interventional radiologist in performing precision bone biopsy under MRI guidance. Future work will include developing an MR-safe drill, improving the mounting of the robot and fixation of the leg, and moving toward first in child clinical trials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Vasudevan V, Cheung MC, Yang R, Zhuge Y, Fischer AC, Koniaris LG et al (2010) Pediatric solid tumors and second malignancies: characteristics and survival outcomes. J Surg Res 160(2):184–189CrossRefPubMed Vasudevan V, Cheung MC, Yang R, Zhuge Y, Fischer AC, Koniaris LG et al (2010) Pediatric solid tumors and second malignancies: characteristics and survival outcomes. J Surg Res 160(2):184–189CrossRefPubMed
3.
go back to reference Dartnell J, Ramachandran M, Katchburian M (2012) Haematogenous acute and subacute paediatric osteomyelitis: a systematic review of the literature. J Bone Joint Surg Br 94(5):584–595CrossRefPubMed Dartnell J, Ramachandran M, Katchburian M (2012) Haematogenous acute and subacute paediatric osteomyelitis: a systematic review of the literature. J Bone Joint Surg Br 94(5):584–595CrossRefPubMed
4.
go back to reference Tsekos NV, Khanicheh A, Christoforou E, Mavroidis C (2007) Magnetic resonance-compatible robotic and mechatronics systems for image-guided interventions and rehabilitation: a review study. Annu Rev Biomed Eng 9(1):351–387CrossRefPubMed Tsekos NV, Khanicheh A, Christoforou E, Mavroidis C (2007) Magnetic resonance-compatible robotic and mechatronics systems for image-guided interventions and rehabilitation: a review study. Annu Rev Biomed Eng 9(1):351–387CrossRefPubMed
5.
go back to reference Gassert R, Burdet E, Chinzei K (2008) Opportunities and challenges in MR-compatible robotics. Eng Med Biol Mag IEEE 27(3):15–22CrossRef Gassert R, Burdet E, Chinzei K (2008) Opportunities and challenges in MR-compatible robotics. Eng Med Biol Mag IEEE 27(3):15–22CrossRef
6.
go back to reference Arnolli MM, Hanumara NC, Franken M, Brouwer DM, Broeders IA (2015) An overview of systems for CT-and MRI-guided percutaneous needle placement in the thorax and abdomen. Int J Med Robot 11(4):458–475CrossRefPubMed Arnolli MM, Hanumara NC, Franken M, Brouwer DM, Broeders IA (2015) An overview of systems for CT-and MRI-guided percutaneous needle placement in the thorax and abdomen. Int J Med Robot 11(4):458–475CrossRefPubMed
7.
go back to reference Monfaredi R, Cleary K, Sharma KMRI (2018) Robots for needle-based interventions: systems and technology. Ann Biomed Eng Jun:19 Monfaredi R, Cleary K, Sharma KMRI (2018) Robots for needle-based interventions: systems and technology. Ann Biomed Eng Jun:19
8.
go back to reference Stoianovici D, Song D, Petrisor D, Ursu D, Mazilu D, Muntener M, Schar M, Patriciu A (2007) “MRI Stealth” robot for prostate interventions. Minim Invasive Ther Allied Technol MITAT Off J Soc Minim Invasive Ther. 16(4):241–248CrossRef Stoianovici D, Song D, Petrisor D, Ursu D, Mazilu D, Muntener M, Schar M, Patriciu A (2007) “MRI Stealth” robot for prostate interventions. Minim Invasive Ther Allied Technol MITAT Off J Soc Minim Invasive Ther. 16(4):241–248CrossRef
9.
go back to reference Melzer A, Gutmann B, Remmele T, Wolf R, Lukoscheck A, Bock M (2008) INNOMOTION for percutaneous image-guided interventions. IEEE Eng Med Biol Mag 27(3):66–73CrossRefPubMed Melzer A, Gutmann B, Remmele T, Wolf R, Lukoscheck A, Bock M (2008) INNOMOTION for percutaneous image-guided interventions. IEEE Eng Med Biol Mag 27(3):66–73CrossRefPubMed
10.
go back to reference Fischer GS, Iordachita I, Csoma C, Tokuda J, DiMaio SP, Tempany CM (2008) MRI-compatible pneumatic robot for transperineal prostate needle placement. IEEEASME Trans Mechatron 13(3):295–305CrossRef Fischer GS, Iordachita I, Csoma C, Tokuda J, DiMaio SP, Tempany CM (2008) MRI-compatible pneumatic robot for transperineal prostate needle placement. IEEEASME Trans Mechatron 13(3):295–305CrossRef
11.
go back to reference Krieger A, Iordachita II, Guion P, Singh AK, Kaushal A, Ménard C (2011) An MRI-compatible robotic system with hybrid tracking for MRI-guided prostate intervention. IEEE Trans Biomed Eng 58(11):3049–3060CrossRefPubMedPubMedCentral Krieger A, Iordachita II, Guion P, Singh AK, Kaushal A, Ménard C (2011) An MRI-compatible robotic system with hybrid tracking for MRI-guided prostate intervention. IEEE Trans Biomed Eng 58(11):3049–3060CrossRefPubMedPubMedCentral
12.
go back to reference Walsh CJ, Shepard J-A, Gupta R, Hanumara NC, Slocum AH (2008) A patient-mounted, telerobotic tool for CT-guided percutaneous interventions. J Med Devices 2(1):011007CrossRef Walsh CJ, Shepard J-A, Gupta R, Hanumara NC, Slocum AH (2008) A patient-mounted, telerobotic tool for CT-guided percutaneous interventions. J Med Devices 2(1):011007CrossRef
13.
go back to reference Hungr N, Fouard C, Robert A, Bricault I, Cinquin P Interventional radiology robot for CT and MRI guided percutaneous interventions. In: Fichtinger G, Martel A, Peters T (eds) Medical image computing and computer-assisted intervention—MICCAI 2011 [Internet]. Springer Berlin Heidelberg; 2011 [cited 2014 Feb 28]. p. 137–44. (Lecture Notes in Computer Science). Available from: http://link.springer.com/chapter/10.1007/978-3-642-23623-5_18 Hungr N, Fouard C, Robert A, Bricault I, Cinquin P Interventional radiology robot for CT and MRI guided percutaneous interventions. In: Fichtinger G, Martel A, Peters T (eds) Medical image computing and computer-assisted intervention—MICCAI 2011 [Internet]. Springer Berlin Heidelberg; 2011 [cited 2014 Feb 28]. p. 137–44. (Lecture Notes in Computer Science). Available from: http://​link.​springer.​com/​chapter/​10.​1007/​978-3-642-23623-5_​18
14.
go back to reference Song S-E, Tokuda J, Tuncali K, Yamada A, Torabi M, Hata N. Design evaluation of a double ring RCM mechanism for robotic needle guidance in MRI-guided liver interventions. In: 2013 IEEE/RSJ international conference on intelligent robots and systems (IROS). 2013. p 4078–4083 Song S-E, Tokuda J, Tuncali K, Yamada A, Torabi M, Hata N. Design evaluation of a double ring RCM mechanism for robotic needle guidance in MRI-guided liver interventions. In: 2013 IEEE/RSJ international conference on intelligent robots and systems (IROS). 2013. p 4078–4083
15.
go back to reference Wu F, Torabi M, Yamada A, Golden A, Fischer GS, Tuncali K (2013) An MRI coil-mounted multi-probe robotic positioner for cryoablation. In: Proc ASME 2013 Int Des Engineering Tech Conf Comput Inf Eng Conf Wu F, Torabi M, Yamada A, Golden A, Fischer GS, Tuncali K (2013) An MRI coil-mounted multi-probe robotic positioner for cryoablation. In: Proc ASME 2013 Int Des Engineering Tech Conf Comput Inf Eng Conf
16.
go back to reference Monfaredi R, Seifabadi R, Iordachita I, Sze R, Safdar N, Sharma K, Cleary K (2014) Design of a body mounted mri-compatible robot for needle guidance in percutaneous procedures such as arthrography. In: Proceedings of the 5th IEEE RAS/embs international conference on biomedical robotics and biomechatronics (BioRob2014) Monfaredi R, Seifabadi R, Iordachita I, Sze R, Safdar N, Sharma K, Cleary K (2014) Design of a body mounted mri-compatible robot for needle guidance in percutaneous procedures such as arthrography. In: Proceedings of the 5th IEEE RAS/embs international conference on biomedical robotics and biomechatronics (BioRob2014)
19.
go back to reference Stoianovici D, Whitcomb LL, Anderson JH, Taylor RH, Kavoussi LR A modular surgical robotic system for image guided percutaneous procedures. In: International conference on medical image computing and computer-assisted intervention [Internet]. Springer; 1998 [cited 2016 Dec 11]. p. 404–410. Available from: http://link.springer.com/chapter/10.1007/BFb0056225 Stoianovici D, Whitcomb LL, Anderson JH, Taylor RH, Kavoussi LR A modular surgical robotic system for image guided percutaneous procedures. In: International conference on medical image computing and computer-assisted intervention [Internet]. Springer; 1998 [cited 2016 Dec 11]. p. 404–410. Available from: http://​link.​springer.​com/​chapter/​10.​1007/​BFb0056225
20.
go back to reference Stoianovici D, Cleary K, Patriciu A, Mazilu D, Stanimir A, Craciunoiu N, Kavoussi LR (2003) AcuBot: a robot for radiological interventions. IEEE Trans Robot Autom 19(5):927–930CrossRef Stoianovici D, Cleary K, Patriciu A, Mazilu D, Stanimir A, Craciunoiu N, Kavoussi LR (2003) AcuBot: a robot for radiological interventions. IEEE Trans Robot Autom 19(5):927–930CrossRef
21.
go back to reference Stoianovici D, Patriciu A, Petrisor D, Mazilu D, Kavoussi L (2007) A new type of motor: pneumatic step motor. IEEEASME Trans Mechatron. 12(1):98–106CrossRef Stoianovici D, Patriciu A, Petrisor D, Mazilu D, Kavoussi L (2007) A new type of motor: pneumatic step motor. IEEEASME Trans Mechatron. 12(1):98–106CrossRef
22.
go back to reference Stoianovici D, Kim C, Srimathveeravalli G, Sebrecht P, Petrisor D, Coleman J, Solomon SB, Hricak H (2014) MRI-safe robot for endorectal prostate biopsy. IEEEASME Trans Mechatron. 19(4):1289–1299CrossRef Stoianovici D, Kim C, Srimathveeravalli G, Sebrecht P, Petrisor D, Coleman J, Solomon SB, Hricak H (2014) MRI-safe robot for endorectal prostate biopsy. IEEEASME Trans Mechatron. 19(4):1289–1299CrossRef
23.
24.
go back to reference Abdelaziz ME, Groenhuis V, Veltman J, Siepel F, Stramigioli S (2017) Controlling the Stormram 2: An MRI-compatible robotic system for breast biopsy. In: IEEE international conference on robotics and automation (ICRA) 2017. p 1746–1753 Abdelaziz ME, Groenhuis V, Veltman J, Siepel F, Stramigioli S (2017) Controlling the Stormram 2: An MRI-compatible robotic system for breast biopsy. In: IEEE international conference on robotics and automation (ICRA) 2017. p 1746–1753
25.
go back to reference Stoianovici D, Kim C, Petrisor D, Jun C, Lim S, Ball MW (2017) MR safe robot, FDA clearance, safety and feasibility of prostate biopsy clinical trial. IEEEASME Trans Mechatron 22(1):115–126CrossRef Stoianovici D, Kim C, Petrisor D, Jun C, Lim S, Ball MW (2017) MR safe robot, FDA clearance, safety and feasibility of prostate biopsy clinical trial. IEEEASME Trans Mechatron 22(1):115–126CrossRef
26.
go back to reference Cohen MG, McMahon CJ, Kung JW, Wu JS (2016) Comparison of battery-powered and manual bone biopsy systems for core needle biopsy of sclerotic bone lesions. Am J Roentgenol 206(5):W83–W86CrossRef Cohen MG, McMahon CJ, Kung JW, Wu JS (2016) Comparison of battery-powered and manual bone biopsy systems for core needle biopsy of sclerotic bone lesions. Am J Roentgenol 206(5):W83–W86CrossRef
Metadata
Title
Robotically assisted long bone biopsy under MRI: cadaver study results
Authors
Sunghwan Lim
Karun Sharma
Pan Li
Doru Petrisor
Stanley Fricke
Dan Stoianovici
Kevin Cleary
Publication date
19-11-2018
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 1/2019
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-018-1889-1

Other articles of this Issue 1/2019

International Journal of Computer Assisted Radiology and Surgery 1/2019 Go to the issue

Premium Partner