Skip to main content
Top

2018 | OriginalPaper | Chapter

7. Robotics: History, Trends, and Future Directions

Authors : Shyamanta M. Hazarika, Uday Shanker Dixit

Published in: Introduction to Mechanical Engineering

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, the history of robotics is traced. The emphasis is on highlighting significant moments in robotics history that had far-reaching consequences on the field. A brief presentation of the technical intricacies is followed by highlight of the recent trends. The chapter finally dwells on the direction robotics is surging and poised to change the world in more things than one could possibly imagine.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Glossary
Actuators
Actuators are the devices that convert some form of energy to mechanical energy.
Automaton
It is a technique to automatically perform a number of functions following a predetermined sequence of operations.
Biomimetics
Biomimetics is the creation of new materials, devices, and systems based on the concepts and principles derived from the nature.
Degrees of freedom
Degrees of freedom are the number of independent movements of an object in a 3-D space.
End-effector
Robot end-effector is a generic term to refer to the device attached at the distal end of a robotic manipulator. It is with the end-effector that the robot interacts with the environment.
Exteroceptor
Exteroceptors are sensors that provide information on the conditions of a body vis-à-vis the environment.
Forward Kinematics
Forward kinematics is the problem of computing the position and orientation of the end-effector given the set of joint angles.
Humanoid
A Humanoid is a machine that resembles and possesses the characteristics of a human.
Internet of Things
It is a network of Internet-connected physical entities such as objects and devices.
Inverse kinematics
Inverse kinematics deals with computing all possible sets of joint angles to attain a prescribed position and orientation of the end-effector.
Kinematics
Kinematics is the branch of dynamics that studies position, velocity, acceleration, and other higher order derivatives of the position variables without considering forces causing these effects.
Manipulator
A robotic manipulator is a chain of links with controllable joints that enables placement of end-effectors in any position and orientation within the workspace.
Path
Path is a sequence of robot configurations in a particular order without regard to the timing of these configurations.
Proprioceptor
Proprioceptors are sensors that provide information on the internal conditions of a body.
Rehabilitation robotics
It refers to application of robotic technologies in therapeutic procedures for augmenting rehabilitation.
Robot
A robot is a reprogrammable, multifunctional manipulator designed to move material, parts, tools, or specialized devices for the performance of a variety of tasks.
Singularities
A matrix called the Jacobian of the manipulator specifies a mapping from velocities in joint space to velocities in Cartesian space. Points at which this mapping is not invertible are called singularities.
Synthetic biology
Synthetic biology is the design and construction of new biological entities such as enzymes, genetic circuits, and cells or the redesign of existing biological systems.
Trajectory
It is a path that a moving object follows as a function of time.
Transducer
Transducer is a device that transforms a physical quantity into the form of an electrical signal or vice versa.
Workspace
It is the region of space in which the end-effector can attain any desired position and orientation.
Literature
1.
go back to reference Lord, C. (1984). The Politics (Aristotle, Trans.). Chicago: University of Chicago Press. Lord, C. (1984). The Politics (Aristotle, Trans.). Chicago: University of Chicago Press.
2.
go back to reference Hobbes, T., & Gaskin, J. C. A. (1998). Leviathan. Oxford: Oxford University Press. Hobbes, T., & Gaskin, J. C. A. (1998). Leviathan. Oxford: Oxford University Press.
3.
go back to reference Nocks, L. (2007). The robot: The life story of a technology. Greenwood Technographies: Greenwood Press, London. Nocks, L. (2007). The robot: The life story of a technology. Greenwood Technographies: Greenwood Press, London.
4.
go back to reference Jazar, R. N. (2010). Theory of applied robotics: Kinematics, dynamics, and control (2nd ed). Springer.CrossRef Jazar, R. N. (2010). Theory of applied robotics: Kinematics, dynamics, and control (2nd ed). Springer.CrossRef
5.
go back to reference Dixit, U. S., Hazarika, M., Davim, J. P. (2016). A brief history of mechanical engineering. Springer. Dixit, U. S., Hazarika, M., Davim, J. P. (2016). A brief history of mechanical engineering. Springer.
6.
go back to reference Craig, John J. (1989). Introduction to robotics: Mechanics and control (2nd ed.). Inc, Boston, MA, USA: Addison-Wesley Longman Publishing Co.MATH Craig, John J. (1989). Introduction to robotics: Mechanics and control (2nd ed.). Inc, Boston, MA, USA: Addison-Wesley Longman Publishing Co.MATH
7.
go back to reference Tsai, L. W. (1999). Robot analysis: The mechanics of serial and parallel manipulators. New York: Wiley. Tsai, L. W. (1999). Robot analysis: The mechanics of serial and parallel manipulators. New York: Wiley.
8.
go back to reference Lewis, F. L., Dawson, D. M., & Abdallah, C. T. (2003). Robot manipulator control: Theory and practice. New York: CRC Press.CrossRef Lewis, F. L., Dawson, D. M., & Abdallah, C. T. (2003). Robot manipulator control: Theory and practice. New York: CRC Press.CrossRef
9.
go back to reference Corke, P. (2007). A simple and systematic approach to assigning Denavit-Hartenberg parameters. IEEE Transactions on Robotics, 23(3), 590–594.CrossRef Corke, P. (2007). A simple and systematic approach to assigning Denavit-Hartenberg parameters. IEEE Transactions on Robotics, 23(3), 590–594.CrossRef
10.
go back to reference Denavit, Jacques, & Hartenberg, R. S. (1955). A kinematic notation for lower-pair mechanisms based on matries. Transactions on ASME Journal of Applied Mechanics, 23, 215–221.MATH Denavit, Jacques, & Hartenberg, R. S. (1955). A kinematic notation for lower-pair mechanisms based on matries. Transactions on ASME Journal of Applied Mechanics, 23, 215–221.MATH
11.
go back to reference Laurent P., (2013). Advanced manufacturing measurement technologies and robotics. Business Innovation Observatory Contract No. 190/PP/ENT/CIP/12/C/N03C01. Laurent P., (2013). Advanced manufacturing measurement technologies and robotics. Business Innovation Observatory Contract No. 190/PP/ENT/CIP/12/C/N03C01.
12.
go back to reference Friis, D. (Ed.). (2016). World robotics report 2016. International Federation of Robotics. Friis, D. (Ed.). (2016). World robotics report 2016. International Federation of Robotics.
13.
go back to reference Tobe, F. (2015). Why Co-Bots Will be a huge innovation and growth driver for robotics industry. IEEE Spectrum. Tobe, F. (2015). Why Co-Bots Will be a huge innovation and growth driver for robotics industry. IEEE Spectrum.
14.
go back to reference Wilson, M. (2002). Robots at the heart of the welding system. Industrial Robot: An International Journal, 29(2), 91–92.CrossRef Wilson, M. (2002). Robots at the heart of the welding system. Industrial Robot: An International Journal, 29(2), 91–92.CrossRef
15.
go back to reference Anandan, T. (2014). Robotic assembly: Shrinking footprint, expanding market. Robotics Industry Insights: RIA Robotics Online. Anandan, T. (2014). Robotic assembly: Shrinking footprint, expanding market. Robotics Industry Insights: RIA Robotics Online.
16.
go back to reference Yoshida, K., Nenchev, D., Ishigami, G., & Tsumaki, Y. (2014). Space robotics. In International Handbook of Space Technology (pp. 541–573).CrossRef Yoshida, K., Nenchev, D., Ishigami, G., & Tsumaki, Y. (2014). Space robotics. In International Handbook of Space Technology (pp. 541–573).CrossRef
17.
go back to reference Gao, Y., & Chien, S. (2017). Review on space robotics: Toward top-level science through space exploration. Science Robotics, 2(7).CrossRef Gao, Y., & Chien, S. (2017). Review on space robotics: Toward top-level science through space exploration. Science Robotics, 2(7).CrossRef
18.
go back to reference Zielinska, T. (2016). Professional and personal service robots. International Journal of Robotics Applications and Technologies (IJRAT), 4(1), 63–82.CrossRef Zielinska, T. (2016). Professional and personal service robots. International Journal of Robotics Applications and Technologies (IJRAT), 4(1), 63–82.CrossRef
19.
go back to reference Lanfranco, A. R., Castellanos, A. E., Desai, J. P., & Meyers, W. C. (2004). Robotic surgery: A current perspective. Annals of Surgery, 239(1), 14–21.CrossRef Lanfranco, A. R., Castellanos, A. E., Desai, J. P., & Meyers, W. C. (2004). Robotic surgery: A current perspective. Annals of Surgery, 239(1), 14–21.CrossRef
20.
go back to reference Kazanzides P., Zuhars, J., Mittelstadt, B., Williamson, B., Cain, P., Smith, F., et al. (1992). Architecture of a surgical robot. In IEEE International Conference on Systems, Man and Cybernetics (pp. 1624–1629). Kazanzides P., Zuhars, J., Mittelstadt, B., Williamson, B., Cain, P., Smith, F., et al. (1992). Architecture of a surgical robot. In IEEE International Conference on Systems, Man and Cybernetics (pp. 1624–1629).
21.
go back to reference Ghodoussi, M., S. E. Butner, Y. Wang (2002). Robotic surgery—the transatlantic case. In IEEE International Conference on Robotics and Automation (pp. 1882–1888). Ghodoussi, M., S. E. Butner, Y. Wang (2002). Robotic surgery—the transatlantic case. In IEEE International Conference on Robotics and Automation (pp. 1882–1888).
22.
go back to reference Guthart G. S., & Salisbury J. K., Jr. (2000). The IntuitiveTMtelesurgery system: Overview and application. In IEEE International Conference on Robotics and Automation, 2000 (pp. 618–621). Guthart G. S., & Salisbury J. K., Jr. (2000). The IntuitiveTMtelesurgery system: Overview and application. In IEEE International Conference on Robotics and Automation, 2000 (pp. 618–621).
23.
go back to reference Bergeles, C., & Yang, G. Z. (2014). From passive tool holders to microsurgeons: Safer, smaller, smarter surgical robots. IEEE Transactions on Biomedical Engineering, 61(5), 1565–1576.CrossRef Bergeles, C., & Yang, G. Z. (2014). From passive tool holders to microsurgeons: Safer, smaller, smarter surgical robots. IEEE Transactions on Biomedical Engineering, 61(5), 1565–1576.CrossRef
24.
go back to reference Hogan, N., Krebs, H. I., Charnnarong, J., Srikrishna, P., & Sharon, A. (1992). MIT-MANUS: A workstation for manual therapy and training. I. In IEEE International Workshop on Robot and Human Communication, 1992 (pp. 161–165. Hogan, N., Krebs, H. I., Charnnarong, J., Srikrishna, P., & Sharon, A. (1992). MIT-MANUS: A workstation for manual therapy and training. I. In IEEE International Workshop on Robot and Human Communication, 1992 (pp. 161–165.
25.
go back to reference Guzmán-Valdivia, C. H., Blanco-Ortega, A., Oliver-Salazar, M. A., Gómez-Becerra, F. A., & Carrera-Escobedo, J. L. (2015). HipBot—The design, development and control of a therapeutic robot for hip rehabilitation. Mechatronics, 30, 55–64.CrossRef Guzmán-Valdivia, C. H., Blanco-Ortega, A., Oliver-Salazar, M. A., Gómez-Becerra, F. A., & Carrera-Escobedo, J. L. (2015). HipBot—The design, development and control of a therapeutic robot for hip rehabilitation. Mechatronics, 30, 55–64.CrossRef
26.
go back to reference Johnson, M., Micera, S., Shibata, T., & Guglielmelli, E. (2008). Rehabilitation and assistive robotics. IEEE Robotics and Automation Magazine, 15(3), 16–110.CrossRef Johnson, M., Micera, S., Shibata, T., & Guglielmelli, E. (2008). Rehabilitation and assistive robotics. IEEE Robotics and Automation Magazine, 15(3), 16–110.CrossRef
27.
go back to reference Teo, G., & Reinerman-Jones, L. (2014). Robot behavior for enhanced human performance and workload. In International Conference on Virtual, Augmented and Mixed Reality (pp. 117–128). Springer International Publishing. Teo, G., & Reinerman-Jones, L. (2014). Robot behavior for enhanced human performance and workload. In International Conference on Virtual, Augmented and Mixed Reality (pp. 117–128). Springer International Publishing.
28.
go back to reference Veloso, M. M. (2002). Entertainment robotics. Communications of the ACM, 45(3), 59–63.CrossRef Veloso, M. M. (2002). Entertainment robotics. Communications of the ACM, 45(3), 59–63.CrossRef
29.
go back to reference Darling, K. (2016). Extending legal protections to social robots: The effects of anthropomorphism, empathy, and violent behavior towards robotic objects. In M. Froomkin, R. Calo, & I. Kerr (Eds.), Robot law. Edward Elgar. Darling, K. (2016). Extending legal protections to social robots: The effects of anthropomorphism, empathy, and violent behavior towards robotic objects. In M. Froomkin, R. Calo, & I. Kerr (Eds.), Robot law. Edward Elgar.
30.
go back to reference Kanda, T., & Ishiguro, H. (2016). Human-robot interaction in social robotics. New York: CRC Press. Kanda, T., & Ishiguro, H. (2016). Human-robot interaction in social robotics. New York: CRC Press.
31.
go back to reference Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence, 47, 139–159.CrossRef Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence, 47, 139–159.CrossRef
32.
go back to reference Lepora, N. F., Verschure, P., & Prescott, T. J. (2013). The state of the art in biomimetics. Bioinspiration & Biomimetics, 8(1).CrossRef Lepora, N. F., Verschure, P., & Prescott, T. J. (2013). The state of the art in biomimetics. Bioinspiration & Biomimetics, 8(1).CrossRef
33.
go back to reference Irwin, J. D. (1997). The industrial electronics handbook. Boca Raton, FL, USA: CRC Press. Irwin, J. D. (1997). The industrial electronics handbook. Boca Raton, FL, USA: CRC Press.
34.
go back to reference Goldberg, K., & Siegwart, R. (Eds.). (2002). Beyond webcams: An introduction to online robots Cambridge. MA, USA: MIT Press. Goldberg, K., & Siegwart, R. (Eds.). (2002). Beyond webcams: An introduction to online robots Cambridge. MA, USA: MIT Press.
35.
go back to reference Mell, P., & Grance, T. (2009). The NIST definition of cloud computing. National Institute of Standards and Technology. Mell, P., & Grance, T. (2009). The NIST definition of cloud computing. National Institute of Standards and Technology.
36.
go back to reference Saxena, A., Jain, A., Sener, O., Jami, A., Misra, D. K., & Koppula, H. S. (2014). Robobrain: Large-scale knowledge engine for robots. arXiv preprint arXiv:1412.0691. Saxena, A., Jain, A., Sener, O., Jami, A., Misra, D. K., & Koppula, H. S. (2014). Robobrain: Large-scale knowledge engine for robots. arXiv preprint arXiv:1412.0691.
37.
go back to reference Waibel, M., Beetz, M., Civera, J., D’Andrea, R., Elfring, J., Gálvez-López, D., et al. (2011). RoboEarth. IEEE Robotics and Automation Magazine, 18(2), 69–82.CrossRef Waibel, M., Beetz, M., Civera, J., D’Andrea, R., Elfring, J., Gálvez-López, D., et al. (2011). RoboEarth. IEEE Robotics and Automation Magazine, 18(2), 69–82.CrossRef
38.
go back to reference Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625–636.CrossRef Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625–636.CrossRef
39.
go back to reference Hoffman, G. (2012). Embodied cognition for autonomous interactive robots. Topics in Cognitive Science, 2012, 1–14. Hoffman, G. (2012). Embodied cognition for autonomous interactive robots. Topics in Cognitive Science, 2012, 1–14.
40.
go back to reference Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Network, 54(15), 2787–2805.CrossRef Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Network, 54(15), 2787–2805.CrossRef
41.
go back to reference Grieco, L. A., Rizzo, A., Colucci, S., Sicari, S., Piro, G., Paola, D. Di, et al. (2014). IoT-aided robotics applications: Technological implications, target domains and open issues. Computer Communications, 54, 32–47.CrossRef Grieco, L. A., Rizzo, A., Colucci, S., Sicari, S., Piro, G., Paola, D. Di, et al. (2014). IoT-aided robotics applications: Technological implications, target domains and open issues. Computer Communications, 54, 32–47.CrossRef
42.
go back to reference Von Neumann, J. (1966). The theory of self-reproducing automata. In Burke, A. W. (Ed.), Essays on cellular automata (pp. 4–65). Illinois: University of Illinois. Von Neumann, J. (1966). The theory of self-reproducing automata. In Burke, A. W. (Ed.), Essays on cellular automata (pp. 4–65). Illinois: University of Illinois.
43.
go back to reference Chirikjian, G. S., Zhou, Y., & Suthakorn, J. (2002). Self-replicating robots for lunar development. IEEE/ASME Transactions on Mechatronics, 7(4), 462–472.CrossRef Chirikjian, G. S., Zhou, Y., & Suthakorn, J. (2002). Self-replicating robots for lunar development. IEEE/ASME Transactions on Mechatronics, 7(4), 462–472.CrossRef
44.
go back to reference Zykov, V., Efstathios, M., Bryant, A., & Lipson, H. (2005). Robotics: Self-reproducing machines. Nature, 435(7039), 163–164.CrossRef Zykov, V., Efstathios, M., Bryant, A., & Lipson, H. (2005). Robotics: Self-reproducing machines. Nature, 435(7039), 163–164.CrossRef
45.
go back to reference Hu, X., & Rousseau, R. (2015). From a word to a world: The current situation in the interdisciplinary field of synthetic biology. PeerJ, 3, e728.CrossRef Hu, X., & Rousseau, R. (2015). From a word to a world: The current situation in the interdisciplinary field of synthetic biology. PeerJ, 3, e728.CrossRef
46.
go back to reference Benner, S. A., & Sismour, A. M. (2005). Synthetic biology. Nature Reviews Genetics, 6(7), 533.CrossRef Benner, S. A., & Sismour, A. M. (2005). Synthetic biology. Nature Reviews Genetics, 6(7), 533.CrossRef
47.
go back to reference Steager, E. B., Wong, D., Mishra, D., Weiss, R., & Kumar, V. (2014). Sensors for micro bio robots via synthetic biology. In IEEE International Conference on Robotics & Automation (ICRA), Hong Kong (pp. 3783–3788). Steager, E. B., Wong, D., Mishra, D., Weiss, R., & Kumar, V. (2014). Sensors for micro bio robots via synthetic biology. In IEEE International Conference on Robotics & Automation (ICRA), Hong Kong (pp. 3783–3788).
48.
go back to reference Sakar, M. S., Steagar, E. B., Kim, D. H., Julius, A. A., Kim, M. J., & Kumar, V. (2010). Biosensing and actuation for microbiorobots. In IEEE International Conference on Robotics and Automation, Anchorage, AL (pp. 3141–3146). Sakar, M. S., Steagar, E. B., Kim, D. H., Julius, A. A., Kim, M. J., & Kumar, V. (2010). Biosensing and actuation for microbiorobots. In IEEE International Conference on Robotics and Automation, Anchorage, AL (pp. 3141–3146).
49.
go back to reference Lu, J., Yang, J., Kim, Y. B., & Ayers, J. (2012). Low power, high PVT variation tolerant central pattern generator design for a bio-hybrid micro robot. In Circuits and systems (MWSCAS 2012), IEEE 55th International Midwest Symposium (pp. 782–785). Lu, J., Yang, J., Kim, Y. B., & Ayers, J. (2012). Low power, high PVT variation tolerant central pattern generator design for a bio-hybrid micro robot. In Circuits and systems (MWSCAS 2012), IEEE 55th International Midwest Symposium (pp. 782–785).
50.
go back to reference Thalmann, N. M., Tian, Li, & Yao, F. (2017). Nadine: A social robot that can localize objects and grasp them in a human way. In Frontiers in electronic technologies: Trends and challenges. Singapore: Springer. Thalmann, N. M., Tian, Li, & Yao, F. (2017). Nadine: A social robot that can localize objects and grasp them in a human way. In Frontiers in electronic technologies: Trends and challenges. Singapore: Springer.
Metadata
Title
Robotics: History, Trends, and Future Directions
Authors
Shyamanta M. Hazarika
Uday Shanker Dixit
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-78488-5_7

Premium Partners