Skip to main content
Top
Published in: Neural Computing and Applications 18/2020

06-03-2020 | Original Article

Robust control based on adaptive neural network for Rotary inverted pendulum with oscillation compensation

Authors: Seyed Hassan Zabihifar, Arkady Semenovich Yushchenko, Hamed Navvabi

Published in: Neural Computing and Applications | Issue 18/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A new stable adaptive neural network (ANN) control scheme for the Furuta pendulum, as a two-degree-of-freedom underactuated nonlinear system, is proposed in this paper. This approach aims to address the control problem of the Furuta pendulum in the steady state and also in the presence of external disturbances. The adaptive classical control laws such as e-modification present some limitations in particular when oscillations are presented in the input. To avoid this problem, two ANNs are implemented using filtered tracking error in the control loop. The first one is a single hidden layer network, used to approximate the equivalent control online, and the second is the feed-forward network, used to minimize the oscillations. The goal of the control is to bring the pendulum close to the upright position in the presence of the various uncertainties and being able to compensate oscillations and external disturbances. The main purpose of the second ANN is to minimize the chattering phenomenon and response time by finding the optimal control input signal, which also leads to the reduction of energy consumption. The learning algorithms of the two ANNs are obtained using the direct Lyapunov stability method. The simulation results are given to highlight the performances of the proposed control scheme.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Kurode S, Asif C (2011) Swing-up and stabilization of rotary inverted pendulum. In: Preprints of the 18th IFAC world congress, Milano (Italy) Kurode S, Asif C (2011) Swing-up and stabilization of rotary inverted pendulum. In: Preprints of the 18th IFAC world congress, Milano (Italy)
2.
go back to reference Shubhobrata R, Ranjit kumar B (2013) Stabilization of furuta pendulum: a backstepping based hierarchical sliding mode approach with disturbance estimation. In: 7th International conference on intelligent systems and control (ISCO) Shubhobrata R, Ranjit kumar B (2013) Stabilization of furuta pendulum: a backstepping based hierarchical sliding mode approach with disturbance estimation. In: 7th International conference on intelligent systems and control (ISCO)
3.
go back to reference Moreno-Valenzuela J (2016) Adaptive neural network control for the trajectory tracking of the furuta pendulum. IEEE Trans Cybern 46:3439–3452CrossRef Moreno-Valenzuela J (2016) Adaptive neural network control for the trajectory tracking of the furuta pendulum. IEEE Trans Cybern 46:3439–3452CrossRef
4.
go back to reference Furuta K, Yamakita M, Kobayashi S (1991) Swing-up control of inverted pendulum. In: International conference on industrial electronics, control and instrumentation Furuta K, Yamakita M, Kobayashi S (1991) Swing-up control of inverted pendulum. In: International conference on industrial electronics, control and instrumentation
5.
go back to reference Huang Y-F, Chen A-C (2013) Adaptive control of rotary inverted pendulum system with time-varying uncertainties. Springer, Berlin, pp 1112–1114 Huang Y-F, Chen A-C (2013) Adaptive control of rotary inverted pendulum system with time-varying uncertainties. Springer, Berlin, pp 1112–1114
7.
go back to reference Aguilar-Ibañez C, Suárez-Castañon M, Gutiérres- Frias O (2010) The direct Lyapunov method for the stabilization of the Furuta pendulum. Int J Control 83(11):2285–2293MATHCrossRef Aguilar-Ibañez C, Suárez-Castañon M, Gutiérres- Frias O (2010) The direct Lyapunov method for the stabilization of the Furuta pendulum. Int J Control 83(11):2285–2293MATHCrossRef
8.
go back to reference Turker T, Gorgun H, Cansever G (2012) Lyapunov’s direct method for stabilization of the Furuta pendulum. Turk J Electr Eng Comput Sci 120(1):99–110 Turker T, Gorgun H, Cansever G (2012) Lyapunov’s direct method for stabilization of the Furuta pendulum. Turk J Electr Eng Comput Sci 120(1):99–110
9.
go back to reference de Jesús RJ (2018) Discrete time control based in neural networks for pendulums. Appl Soft Comput J 68:821–832CrossRef de Jesús RJ (2018) Discrete time control based in neural networks for pendulums. Appl Soft Comput J 68:821–832CrossRef
10.
12.
go back to reference Hera P, Freidovich L, Shiriaev A, Mettin U (2009) New approach for swing up the Furuta pendulum: theory and experiments. Mechatronics 19:1240–1250CrossRef Hera P, Freidovich L, Shiriaev A, Mettin U (2009) New approach for swing up the Furuta pendulum: theory and experiments. Mechatronics 19:1240–1250CrossRef
13.
go back to reference Hercus R, Wong K-Y (2013) Control of an inverted pendulum using the NeuraBase. In: International conference on neural information processing Hercus R, Wong K-Y (2013) Control of an inverted pendulum using the NeuraBase. In: International conference on neural information processing
14.
go back to reference Aguilar L, Boiko I, Fridman L, Iriarte R (2009) Generating self-excited oscillations via two-relay controller. IEEE Trans Autom Control 54(2):416–420MathSciNetMATHCrossRef Aguilar L, Boiko I, Fridman L, Iriarte R (2009) Generating self-excited oscillations via two-relay controller. IEEE Trans Autom Control 54(2):416–420MathSciNetMATHCrossRef
15.
go back to reference Freidovich L, Shiriaev A, Gordillo F, Gomez-Estern F, Aracil J (2009) Partial-energy-shaping control for orbital stabilization of high-frequency oscillations of the Furuta pendulum. IEEE Trans Control Syst Technol 17(4):853–858MATHCrossRef Freidovich L, Shiriaev A, Gordillo F, Gomez-Estern F, Aracil J (2009) Partial-energy-shaping control for orbital stabilization of high-frequency oscillations of the Furuta pendulum. IEEE Trans Control Syst Technol 17(4):853–858MATHCrossRef
16.
go back to reference Sicard P, Chaoui H (2011) Motion and balance neural control of inverted pendulums with nonlinear friction and disturbance. In: Proceedings of the 24th Canadian conference on electrical and computer engineering (CCECE), Niagara Falls, Canada Sicard P, Chaoui H (2011) Motion and balance neural control of inverted pendulums with nonlinear friction and disturbance. In: Proceedings of the 24th Canadian conference on electrical and computer engineering (CCECE), Niagara Falls, Canada
17.
go back to reference Nelson J, Kraft LG (1994) Real-time control of an inverted pendulum system using complementary neural network and optimal techniques. In: American control conference, Baltimore Nelson J, Kraft LG (1994) Real-time control of an inverted pendulum system using complementary neural network and optimal techniques. In: American control conference, Baltimore
18.
go back to reference Cong S, Liang Y (2009) PID-like neural network nonlinear adaptive control for uncertain multivariable motion control systems. IEEE Trans Ind Electron 56:3872–3879CrossRef Cong S, Liang Y (2009) PID-like neural network nonlinear adaptive control for uncertain multivariable motion control systems. IEEE Trans Ind Electron 56:3872–3879CrossRef
19.
go back to reference Hsu C-F (2014) Adaptive backstepping Elman-based neural control for unknown nonlinear systems. Neurocomputing 136:170–179CrossRef Hsu C-F (2014) Adaptive backstepping Elman-based neural control for unknown nonlinear systems. Neurocomputing 136:170–179CrossRef
20.
go back to reference Hsu C-F, Lin C-M, Yeh R-G (2013) Supervisory adaptive dynamic RBF-based neural-fuzzy control system design for unknown nonlinear systems. Appl Soft Comput 13:1620–1626CrossRef Hsu C-F, Lin C-M, Yeh R-G (2013) Supervisory adaptive dynamic RBF-based neural-fuzzy control system design for unknown nonlinear systems. Appl Soft Comput 13:1620–1626CrossRef
21.
go back to reference Ping Z (2013) Tracking problems of a spherical inverted pendulum via neural network enhanced design. Neurocomputing 106:137–147CrossRef Ping Z (2013) Tracking problems of a spherical inverted pendulum via neural network enhanced design. Neurocomputing 106:137–147CrossRef
22.
go back to reference Yu C, Wang F, Lu Y (2010) Robust control of a Furuta pendulum. In: SICE annual conference Yu C, Wang F, Lu Y (2010) Robust control of a Furuta pendulum. In: SICE annual conference
23.
go back to reference Khanesar M, Teshnehlab M, Shoorehdeli M (2007) Fuzzy sliding mode control of rotary inverted pendulum. In: IEEE international conference on computational cybernetics Khanesar M, Teshnehlab M, Shoorehdeli M (2007) Fuzzy sliding mode control of rotary inverted pendulum. In: IEEE international conference on computational cybernetics
24.
go back to reference Van Cuong P, Nan WY (2016) Adaptive trajectory tracking neural network control with robust compensator for robot manipulators. Nat Comput Appl 27:525–536 Van Cuong P, Nan WY (2016) Adaptive trajectory tracking neural network control with robust compensator for robot manipulators. Nat Comput Appl 27:525–536
25.
go back to reference Fantoni I (2002) Non-linear control for underactuated mechanical systems. Springer, LondonCrossRef Fantoni I (2002) Non-linear control for underactuated mechanical systems. Springer, LondonCrossRef
26.
go back to reference Olfati-Saber R (1999) Fixed point controllers and stabilization of the cart-pole system and the rotating pendulum. In: Proceedings of the 38th IEEE conference on decision and control, vol 2, No. December, pp 1174–1181 Olfati-Saber R (1999) Fixed point controllers and stabilization of the cart-pole system and the rotating pendulum. In: Proceedings of the 38th IEEE conference on decision and control, vol 2, No. December, pp 1174–1181
27.
go back to reference Boudjedir H, Yacef F, Bouhalim O, Rizoug A (2012) Dual neural network for adaptive sliding mode control of quadrotor helicopter stabilization. Int J Inf Sci Techn (IJIST) 2:1–14 Boudjedir H, Yacef F, Bouhalim O, Rizoug A (2012) Dual neural network for adaptive sliding mode control of quadrotor helicopter stabilization. Int J Inf Sci Techn (IJIST) 2:1–14
28.
go back to reference Lewis FW, Jagannathan S, Yesildirak A (1998) Neural network control of robot manipulators and non-linear systems. Taylor & Francis, London Lewis FW, Jagannathan S, Yesildirak A (1998) Neural network control of robot manipulators and non-linear systems. Taylor & Francis, London
29.
go back to reference Shuzhi S, Ge S, Hang CC, Lee TH, Zhang T (2002) Stable adaptive neural network control. Springer, New York Shuzhi S, Ge S, Hang CC, Lee TH, Zhang T (2002) Stable adaptive neural network control. Springer, New York
30.
go back to reference Kim S, Jung SS (2008) Control experiment of a wheel-driven mobile inverted pendulum using neural network. IEEE Trans Control Syst Technol 16(2):297–303CrossRef Kim S, Jung SS (2008) Control experiment of a wheel-driven mobile inverted pendulum using neural network. IEEE Trans Control Syst Technol 16(2):297–303CrossRef
31.
go back to reference Zhang B-L, Han Q-L, Zhang X-M (2017) Recent advances in vibration control of offshore platforms. Nonlinear Dyn 89(2):755–771CrossRef Zhang B-L, Han Q-L, Zhang X-M (2017) Recent advances in vibration control of offshore platforms. Nonlinear Dyn 89(2):755–771CrossRef
32.
go back to reference Zhang B-L, Han Q-L, Zhang X-M (2014) Sliding mode control with mixed current and delayed states for offshore steel jacket platforms. IEEE Trans Control Syst Technol 22:1769–1783CrossRef Zhang B-L, Han Q-L, Zhang X-M (2014) Sliding mode control with mixed current and delayed states for offshore steel jacket platforms. IEEE Trans Control Syst Technol 22:1769–1783CrossRef
33.
go back to reference George S, Feng L (2001) Adaptive neural network control by adaptive interaction. In: Proceedings of the American control conference George S, Feng L (2001) Adaptive neural network control by adaptive interaction. In: Proceedings of the American control conference
34.
go back to reference Robert DB, Feng L (1999) Adaptive interaction and its application to neural networks. Inf Sci 121(3):201–215MathSciNet Robert DB, Feng L (1999) Adaptive interaction and its application to neural networks. Inf Sci 121(3):201–215MathSciNet
35.
go back to reference Kurode S, Asif C (2011) Swing-up and stabilization of rotary inverted pendulum using sliding modes. In: IFAC, Milano Kurode S, Asif C (2011) Swing-up and stabilization of rotary inverted pendulum using sliding modes. In: IFAC, Milano
Metadata
Title
Robust control based on adaptive neural network for Rotary inverted pendulum with oscillation compensation
Authors
Seyed Hassan Zabihifar
Arkady Semenovich Yushchenko
Hamed Navvabi
Publication date
06-03-2020
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 18/2020
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-04821-x

Other articles of this Issue 18/2020

Neural Computing and Applications 18/2020 Go to the issue

Extreme Learning Machine and Deep Learning Networks

Object affordance detection with relationship-aware network

Premium Partner