Skip to main content
Top
Published in: Journal of Scientific Computing 1/2021

01-04-2021

Robust Low Transformed Multi-Rank Tensor Methods for Image Alignment

Authors: Duo Qiu, Minru Bai, Michael K. Ng, Xiongjun Zhang

Published in: Journal of Scientific Computing | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Aligning a group of linearly correlated images is an important task in computer vision. In this paper, we propose a combination of transformed tensor nuclear norm and tensor \(\ell _1\) norm to deal with this image alignment problem, where the observed images, stacked into a third-order tensor, are deformed by unknown domain transformations and corrupted by sparse noise like impulse noise, partial occlusions, and illumination variation. The key advantage of the proposed method is that both spatial correlation and images variation can be captured by the use of transformed tensor nuclear norm. We show that when the underlying of correlated images is a low multi-rank tensor, an upper error bound of the estimator of the proposed model can be established and this bound can be better than the previous result. Besides the proposed convex transformed tensor model, the method can be further studied by incorporating nonconvex functions in the transformed tensor nuclear norm and the sparsity norm. Both the proposed convex and nonconvex optimization models are solved by generalized Gauss–Newton algorithms. Also the global convergence of the numerical methods for solving the subproblems of convex and nonconvex optimization models can be provided under very mild conditions. Extensive numerical experiments on real images with misalignment and sparse corruptions demonstrate the performance of our proposed methods is better than that of several state-of-the-art methods in terms of accuracy and efficiency.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Aguerrebere, C., Delbracio, M., Bartesaghi, A., Sapiro, G.: Fundamental limits in multi-image alignment. IEEE Trans. Signal Process. 64(21), 5707–5722 (2016)MathSciNetMATHCrossRef Aguerrebere, C., Delbracio, M., Bartesaghi, A., Sapiro, G.: Fundamental limits in multi-image alignment. IEEE Trans. Signal Process. 64(21), 5707–5722 (2016)MathSciNetMATHCrossRef
2.
go back to reference Arica, N., Yarman-Vural, F.T.: Optical character recognition for cursive handwriting. IEEE Trans. Pattern Anal. Mach. Intell. 24(6), 801–813 (2002)CrossRef Arica, N., Yarman-Vural, F.T.: Optical character recognition for cursive handwriting. IEEE Trans. Pattern Anal. Mach. Intell. 24(6), 801–813 (2002)CrossRef
3.
go back to reference Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka–Łojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)MathSciNetMATHCrossRef Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka–Łojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)MathSciNetMATHCrossRef
4.
go back to reference Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods. Math. Program. 137(1–2), 91–129 (2013)MathSciNetMATHCrossRef Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods. Math. Program. 137(1–2), 91–129 (2013)MathSciNetMATHCrossRef
5.
go back to reference Basri, R., Jacobs, D.: Lambertian reflectance and linear subspaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 218–233 (2003)CrossRef Basri, R., Jacobs, D.: Lambertian reflectance and linear subspaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 218–233 (2003)CrossRef
6.
go back to reference Bengua, J.A., Phien, H.N., Tuan, H.D., Do, M.N.: Efficient tensor completion for color image and video recovery: low-rank tensor train. IEEE Trans. Image Process. 26(5), 2466–2479 (2017)MathSciNetMATHCrossRef Bengua, J.A., Phien, H.N., Tuan, H.D., Do, M.N.: Efficient tensor completion for color image and video recovery: low-rank tensor train. IEEE Trans. Image Process. 26(5), 2466–2479 (2017)MathSciNetMATHCrossRef
7.
go back to reference Bolte, J., Daniilidis, A., Lewis, A.: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17(4), 1205–1223 (2007)MATHCrossRef Bolte, J., Daniilidis, A., Lewis, A.: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17(4), 1205–1223 (2007)MATHCrossRef
8.
go back to reference Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1–2), 459–494 (2014)MathSciNetMATHCrossRef Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1–2), 459–494 (2014)MathSciNetMATHCrossRef
9.
10.
go back to reference Carroll, J.D., Chang, J.-J.: Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart–Young” decomposition. Psychometrika 35(3), 283–319 (1970)MATHCrossRef Carroll, J.D., Chang, J.-J.: Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart–Young” decomposition. Psychometrika 35(3), 283–319 (1970)MATHCrossRef
11.
go back to reference Chen, L., Sun, D., Toh, K.-C.: An efficient inexact symmetric Gauss–Seidel based majorized ADMM for high-dimensional convex composite conic programming. Math. Program. 161(1–2), 237–270 (2017)MathSciNetMATHCrossRef Chen, L., Sun, D., Toh, K.-C.: An efficient inexact symmetric Gauss–Seidel based majorized ADMM for high-dimensional convex composite conic programming. Math. Program. 161(1–2), 237–270 (2017)MathSciNetMATHCrossRef
12.
go back to reference Chen, X., Han, Z., Wang, Y., Tang, Y., Yu, H.: Nonconvex plus quadratic penalized low-rank and sparse decomposition for noisy image alignment. Sci. China Inform. Sci. 59(5), 052107 (2016)CrossRef Chen, X., Han, Z., Wang, Y., Tang, Y., Yu, H.: Nonconvex plus quadratic penalized low-rank and sparse decomposition for noisy image alignment. Sci. China Inform. Sci. 59(5), 052107 (2016)CrossRef
13.
go back to reference Cox, M., Sridharan, S., Lucey, S., Cohn, J.: Least squares congealing for unsupervised alignment of images. In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008) Cox, M., Sridharan, S., Lucey, S., Cohn, J.: Least squares congealing for unsupervised alignment of images. In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)
14.
go back to reference Cox, M., Sridharan, S., Lucey, S., Cohn, J.: Least-squares congealing for large numbers of images. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1949–1956 (2009) Cox, M., Sridharan, S., Lucey, S., Cohn, J.: Least-squares congealing for large numbers of images. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1949–1956 (2009)
15.
go back to reference Cromme, L.: Strong uniqueness: a far-reaching criterion for the convergence analysis of iterative procedures. Numer. Math. 29(2), 179–193 (1978)MathSciNetMATHCrossRef Cromme, L.: Strong uniqueness: a far-reaching criterion for the convergence analysis of iterative procedures. Numer. Math. 29(2), 179–193 (1978)MathSciNetMATHCrossRef
16.
go back to reference Ding, C., Qi, H.-D.: Convex optimization learning of faithful Euclidean distance representations in nonlinear dimensionality reduction. Math. Program. 164(1–2), 341–381 (2017)MathSciNetMATHCrossRef Ding, C., Qi, H.-D.: Convex optimization learning of faithful Euclidean distance representations in nonlinear dimensionality reduction. Math. Program. 164(1–2), 341–381 (2017)MathSciNetMATHCrossRef
17.
go back to reference Donoho, D.L., Grimes, C.: Image manifolds which are isometric to Euclidean space. J. Math. Imaging Vis. 23(1), 5–24 (2005)MathSciNetCrossRef Donoho, D.L., Grimes, C.: Image manifolds which are isometric to Euclidean space. J. Math. Imaging Vis. 23(1), 5–24 (2005)MathSciNetCrossRef
18.
go back to reference Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96(456), 1348–1360 (2001)MathSciNetMATHCrossRef Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96(456), 1348–1360 (2001)MathSciNetMATHCrossRef
19.
20.
21.
go back to reference Gong, P, Zhang, C., Lu, Z., Huang, J., Ye, J.: A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems. In: International Conference on Machine Learning, pp. 37–45 (2013) Gong, P, Zhang, C., Lu, Z., Huang, J., Ye, J.: A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems. In: International Conference on Machine Learning, pp. 37–45 (2013)
22.
go back to reference He, J., Zhang, D., Balzano, L., Tao, T.: Iterative Grassmannian optimization for robust image alignment. Image Vis. Comput. 32(10), 800–813 (2014)CrossRef He, J., Zhang, D., Balzano, L., Tao, T.: Iterative Grassmannian optimization for robust image alignment. Image Vis. Comput. 32(10), 800–813 (2014)CrossRef
24.
go back to reference Huang, G.B., Jain, V., Learned-Miller, E.: Unsupervised joint alignment of complex images. In: 2007 IEEE International Conference on Computer Vision, pp. 1–8 (2007) Huang, G.B., Jain, V., Learned-Miller, E.: Unsupervised joint alignment of complex images. In: 2007 IEEE International Conference on Computer Vision, pp. 1–8 (2007)
25.
go back to reference Jiang, Q., Ng, M.: Robust low-tubal-rank tensor completion via convex optimization. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, pp 2649–2655. AAAI Press (2019) Jiang, Q., Ng, M.: Robust low-tubal-rank tensor completion via convex optimization. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, pp 2649–2655. AAAI Press (2019)
26.
go back to reference Jittorntrum, K., Osborne, M.R.: Strong uniqueness and second order convergence in nonlinear discrete approximation. Numer. Math. 34(4), 439–455 (1980)MathSciNetMATHCrossRef Jittorntrum, K., Osborne, M.R.: Strong uniqueness and second order convergence in nonlinear discrete approximation. Numer. Math. 34(4), 439–455 (1980)MathSciNetMATHCrossRef
27.
go back to reference Kernfeld, E., Kilmer, M., Aeron, S.: Tensor-tensor products with invertible linear transforms. Linear Algebra Appl. 485, 545–570 (2015)MathSciNetMATHCrossRef Kernfeld, E., Kilmer, M., Aeron, S.: Tensor-tensor products with invertible linear transforms. Linear Algebra Appl. 485, 545–570 (2015)MathSciNetMATHCrossRef
28.
go back to reference Kilmer, M.E., Braman, K., Hao, N., Hoover, R.C.: Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl. 34(1), 148–172 (2013)MathSciNetMATHCrossRef Kilmer, M.E., Braman, K., Hao, N., Hoover, R.C.: Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl. 34(1), 148–172 (2013)MathSciNetMATHCrossRef
29.
32.
go back to reference Learned-Miller, E.G.: Data driven image models through continuous joint alignment. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 236–250 (2006)CrossRef Learned-Miller, E.G.: Data driven image models through continuous joint alignment. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 236–250 (2006)CrossRef
33.
go back to reference LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRef LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRef
35.
go back to reference Li, P., Feng, J., Jin, X., Zhang, L., Xu, X., Yan, S.: Online robust low-rank tensor modeling for streaming data analysis. IEEE Trans. Neural Netw. Learn. Syst. 30(4), 1061–1075 (2019)MathSciNetCrossRef Li, P., Feng, J., Jin, X., Zhang, L., Xu, X., Yan, S.: Online robust low-rank tensor modeling for streaming data analysis. IEEE Trans. Neural Netw. Learn. Syst. 30(4), 1061–1075 (2019)MathSciNetCrossRef
36.
go back to reference Li, X., Sun, D., Toh, K.-C.: A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions. Math. Program. 155(1–2), 333–373 (2016)MathSciNetMATHCrossRef Li, X., Sun, D., Toh, K.-C.: A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions. Math. Program. 155(1–2), 333–373 (2016)MathSciNetMATHCrossRef
37.
go back to reference Li, Y., Chen, C., Yang, F., Huang, J.: Hierarchical sparse representation for robust image registration. IEEE Trans. Pattern Anal. Mach. Intell. 40(9), 2151–2164 (2018)CrossRef Li, Y., Chen, C., Yang, F., Huang, J.: Hierarchical sparse representation for robust image registration. IEEE Trans. Pattern Anal. Mach. Intell. 40(9), 2151–2164 (2018)CrossRef
38.
go back to reference Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 208–220 (2013)CrossRef Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 208–220 (2013)CrossRef
39.
go back to reference Łojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels. In Les Équations aux Dérivées Partielles, Éditions du centre National de la Recherche Scientifique, pp. 87–89 (1963) Łojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels. In Les Équations aux Dérivées Partielles, Éditions du centre National de la Recherche Scientifique, pp. 87–89 (1963)
40.
go back to reference Lu, C., Feng, J., Chen, Y., Liu, W., Lin, Z., Yan, S.: Tensor robust principal component analysis with a new tensor nuclear norm. IEEE Trans. Pattern Anal. Mach. Intell. 42(4), 925–938 (2020)CrossRef Lu, C., Feng, J., Chen, Y., Liu, W., Lin, Z., Yan, S.: Tensor robust principal component analysis with a new tensor nuclear norm. IEEE Trans. Pattern Anal. Mach. Intell. 42(4), 925–938 (2020)CrossRef
41.
go back to reference Ma, Y., Soatto, S., Kosecka, J., Sastry, S.S.: An invitation to 3-D vision: from images to geometric models. Springer, New York (2004)MATHCrossRef Ma, Y., Soatto, S., Kosecka, J., Sastry, S.S.: An invitation to 3-D vision: from images to geometric models. Springer, New York (2004)MATHCrossRef
42.
go back to reference Marjanovic, G., Solo, V.: On \(\ell _q\) optimization and matrix completion. IEEE Trans. Signal Process. 60(11), 5714–5724 (2012)MathSciNetMATHCrossRef Marjanovic, G., Solo, V.: On \(\ell _q\) optimization and matrix completion. IEEE Trans. Signal Process. 60(11), 5714–5724 (2012)MathSciNetMATHCrossRef
43.
go back to reference Martin, C.D., Shafer, R., LaRue, B.: An order-p tensor factorization with applications in imaging. SIAM J. Sci. Comput. 35(1), A474–A490 (2013)MathSciNetMATHCrossRef Martin, C.D., Shafer, R., LaRue, B.: An order-p tensor factorization with applications in imaging. SIAM J. Sci. Comput. 35(1), A474–A490 (2013)MathSciNetMATHCrossRef
44.
go back to reference Martinez, A.M.: The AR face database. Computer Vision Center, Technical Report, 24 (1998) Martinez, A.M.: The AR face database. Computer Vision Center, Technical Report, 24 (1998)
45.
go back to reference Mu, C., Huang, B., Wright, J., Goldfarb, D.: Square deal: lower bounds and improved relaxations for tensor recovery. Proc. Int. Conf. Mach. Learn. 32, 73–81 (2014) Mu, C., Huang, B., Wright, J., Goldfarb, D.: Square deal: lower bounds and improved relaxations for tensor recovery. Proc. Int. Conf. Mach. Learn. 32, 73–81 (2014)
46.
go back to reference Ng, M.K., Zhang, X., Zhao, X.-L.: Patched-tubes unitary transform for robust tensor completion. Pattern Recognit. 100, 107181 (2020)CrossRef Ng, M.K., Zhang, X., Zhao, X.-L.: Patched-tubes unitary transform for robust tensor completion. Pattern Recognit. 100, 107181 (2020)CrossRef
47.
go back to reference Nikolova, M., Ng, M.K., Tam, C.-P.: On \(\ell _1\) data fitting and concave regularization for image recovery. SIAM J. Sci. Comput. 35(1), A397–A430 (2013)MATHCrossRef Nikolova, M., Ng, M.K., Tam, C.-P.: On \(\ell _1\) data fitting and concave regularization for image recovery. SIAM J. Sci. Comput. 35(1), A397–A430 (2013)MATHCrossRef
49.
go back to reference Peng, Y., Ganesh, A., Wright, J., Xu, W., Ma, Y.: RASL: robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2233–2246 (2012)CrossRef Peng, Y., Ganesh, A., Wright, J., Xu, W., Ma, Y.: RASL: robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2233–2246 (2012)CrossRef
50.
go back to reference Penney, G.P., Weese, J., Little, J.A., Desmedt, P., Hill, D.L., Hawkes, D.J.: A comparison of similarity measures for use in 2-D-3-D medical image registration. IEEE Trans. Med. Imaging 17(4), 586–595 (1998)CrossRef Penney, G.P., Weese, J., Little, J.A., Desmedt, P., Hill, D.L., Hawkes, D.J.: A comparison of similarity measures for use in 2-D-3-D medical image registration. IEEE Trans. Med. Imaging 17(4), 586–595 (1998)CrossRef
51.
go back to reference Pluim, J.P., Maintz, J.A., Viergever, M.A.: Mutual-information-based registration of medical images: a survey. IEEE Trans. Med. Imaging 22(8), 986–1004 (2003)CrossRef Pluim, J.P., Maintz, J.A., Viergever, M.A.: Mutual-information-based registration of medical images: a survey. IEEE Trans. Med. Imaging 22(8), 986–1004 (2003)CrossRef
52.
go back to reference Qiu, D., Bai, M., Ng, M., Zhang, X.: Nonlocal robust tensor recovery with nonconvex regularization. Inverse Problems 37(3), 035001 (2021)MathSciNetMATHCrossRef Qiu, D., Bai, M., Ng, M., Zhang, X.: Nonlocal robust tensor recovery with nonconvex regularization. Inverse Problems 37(3), 035001 (2021)MathSciNetMATHCrossRef
53.
go back to reference Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (2009)MATH Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (2009)MATH
54.
go back to reference Romera-Paredes, B., Pontil, M.: A new convex relaxation for tensor completion. In: Advances in Neural Information Processing Systems, pp. 2967–2975 (2013) Romera-Paredes, B., Pontil, M.: A new convex relaxation for tensor completion. In: Advances in Neural Information Processing Systems, pp. 2967–2975 (2013)
55.
go back to reference Song, G., Ng, M.K., Zhang, X.: Robust tensor completion using transformed tensor singular value decomposition. Numer. Linear Algebra Appl. 27(3), e2299 (2020)MathSciNetMATHCrossRef Song, G., Ng, M.K., Zhang, X.: Robust tensor completion using transformed tensor singular value decomposition. Numer. Linear Algebra Appl. 27(3), e2299 (2020)MathSciNetMATHCrossRef
56.
go back to reference Song, W., Zhu, J., Li, Y., Chen, C.: Image alignment by online robust PCA via stochastic gradient descent. IEEE Trans. Circuits Syst. Video Technol. 26(7), 1241–1250 (2016)CrossRef Song, W., Zhu, J., Li, Y., Chen, C.: Image alignment by online robust PCA via stochastic gradient descent. IEEE Trans. Circuits Syst. Video Technol. 26(7), 1241–1250 (2016)CrossRef
58.
go back to reference Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58(1), 267–288 (1996)MathSciNetMATH Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58(1), 267–288 (1996)MathSciNetMATH
59.
60.
go back to reference Turk, M. A., Pentland, A. P.: Face recognition using eigenfaces. In: Proceedings of the 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 586–587 (1991) Turk, M. A., Pentland, A. P.: Face recognition using eigenfaces. In: Proceedings of the 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 586–587 (1991)
61.
go back to reference Vedaldi, A., Guidi, G., Soatto, S.: Joint data alignment up to (lossy) transformations. In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008) Vedaldi, A., Guidi, G., Soatto, S.: Joint data alignment up to (lossy) transformations. In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)
62.
go back to reference Wu, Y., Shen, B., Ling, H.: Online robust image alignment via iterative convex optimization. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1808–1814. IEEE (2012) Wu, Y., Shen, B., Ling, H.: Online robust image alignment via iterative convex optimization. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1808–1814. IEEE (2012)
64.
go back to reference Zhang, T.: Analysis of multi-stage convex relaxation for sparse regularization. J. Mach. Learn. Res. 11(35), 1081–1107 (2010)MathSciNetMATH Zhang, T.: Analysis of multi-stage convex relaxation for sparse regularization. J. Mach. Learn. Res. 11(35), 1081–1107 (2010)MathSciNetMATH
65.
go back to reference Zhang, X.: A nonconvex relaxation approach to low-rank tensor completion. IEEE Trans. Neural Netw. Learn. Syst. 30(6), 1659–1671 (2019)MathSciNetCrossRef Zhang, X.: A nonconvex relaxation approach to low-rank tensor completion. IEEE Trans. Neural Netw. Learn. Syst. 30(6), 1659–1671 (2019)MathSciNetCrossRef
66.
go back to reference Zhang, X., Bai, M., Ng, M.K.: Nonconvex-TV based image restoration with impulse noise removal. SIAM J. Imaging Sci. 10(3), 1627–1667 (2017)MathSciNetMATHCrossRef Zhang, X., Bai, M., Ng, M.K.: Nonconvex-TV based image restoration with impulse noise removal. SIAM J. Imaging Sci. 10(3), 1627–1667 (2017)MathSciNetMATHCrossRef
67.
go back to reference Zhang, X., Ng, M.K.: A corrected tensor nuclear norm minimization method for noisy low-rank tensor completion. SIAM J. Imaging Sci. 12(2), 1231–1273 (2019)MathSciNetCrossRef Zhang, X., Ng, M.K.: A corrected tensor nuclear norm minimization method for noisy low-rank tensor completion. SIAM J. Imaging Sci. 12(2), 1231–1273 (2019)MathSciNetCrossRef
68.
go back to reference Zhang, X., Wang, D., Zhou, Z., Ma, Y.: Simultaneous rectification and alignment via robust recovery of low-rank tensors. Adv. Neural Inform. Process. Syst. 26, 1637–1645 (2013) Zhang, X., Wang, D., Zhou, Z., Ma, Y.: Simultaneous rectification and alignment via robust recovery of low-rank tensors. Adv. Neural Inform. Process. Syst. 26, 1637–1645 (2013)
69.
go back to reference Zhang, X., Wang, D., Zhou, Z., Ma, Y.: Robust low-rank tensor recovery with rectification and alignment. IEEE Trans. Pattern Anal. Mach. Intell. 43(1), 238–255 (2021)CrossRef Zhang, X., Wang, D., Zhou, Z., Ma, Y.: Robust low-rank tensor recovery with rectification and alignment. IEEE Trans. Pattern Anal. Mach. Intell. 43(1), 238–255 (2021)CrossRef
70.
go back to reference Zhang, X., Zhou, Z., Wang, D., Ma, Y.: Hybrid singular value thresholding for tensor completion. Proc. AAAI Conf. Artif. Intell. 28, 1362–1368 (2014) Zhang, X., Zhou, Z., Wang, D., Ma, Y.: Hybrid singular value thresholding for tensor completion. Proc. AAAI Conf. Artif. Intell. 28, 1362–1368 (2014)
71.
go back to reference Zhang, X.-D.: Matrix Analysis and Applications. Cambridge University Press, Cambridge (2017)MATHCrossRef Zhang, X.-D.: Matrix Analysis and Applications. Cambridge University Press, Cambridge (2017)MATHCrossRef
73.
go back to reference Zhang, Z., Ely, G., Aeron, S., Hao, N., Kilmer, M.: Novel methods for multilinear data completion and de-noising based on tensor-SVD. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3842–3849 (2014) Zhang, Z., Ely, G., Aeron, S., Hao, N., Kilmer, M.: Novel methods for multilinear data completion and de-noising based on tensor-SVD. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3842–3849 (2014)
74.
75.
go back to reference Zheng, Q., Wang, Y., Heng, P.A.: Online subspace learning from gradient orientations for robust image alignment. IEEE Trans. Image Process. 28(7), 3383–3394 (2019)MathSciNetMATHCrossRef Zheng, Q., Wang, Y., Heng, P.A.: Online subspace learning from gradient orientations for robust image alignment. IEEE Trans. Image Process. 28(7), 3383–3394 (2019)MathSciNetMATHCrossRef
Metadata
Title
Robust Low Transformed Multi-Rank Tensor Methods for Image Alignment
Authors
Duo Qiu
Minru Bai
Michael K. Ng
Xiongjun Zhang
Publication date
01-04-2021
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 1/2021
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-021-01437-8

Other articles of this Issue 1/2021

Journal of Scientific Computing 1/2021 Go to the issue

Premium Partner