Skip to main content
Top
Published in: Neural Computing and Applications 1/2022

09-08-2021 | Original Article

Robust penalized extreme learning machine regression with applications in wind speed forecasting

Authors: Yang Yang, Hu Zhou, Yuchao Gao, Jinran Wu, You-Gan Wang, Liya Fu

Published in: Neural Computing and Applications | Issue 1/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In extreme learning machine (ELM) framework, the hidden layer setting determines its generalization ability; and in presence of outliers in the training set, weights between hidden layer and output layer based on the least squares would be overly estimated. To address these two problems in ELM implementation, we extend robust penalized statistical framework in ELM and propose a general robust penalized ELM, which consists of two components (robust loss function and regularization item), for regression to improve the efficiency of ELM training with more elegant neural network structure resulting in more accurate predictions. We investigate six different loss functions (\(l_1\)-norm loss, \(l_2\)-norm loss, Huber loss, Bisquare loss, exponential squared loss and Lncosh loss) and two regularization strategies (lasso penalty and ridge penalty). Furthermore, we present two training procedures for our robust penalized ELM via iterative reweighted least squares method with hyper-parameter setting by cross-validation with lasso penalty and ridge penalty, respectively. Finally, the proposed robust penalized ELM is employed in an ultra-short-term wind speed forecasting study, and our framework is confirmed in this specific application producing more effective predictions according to the multi-step forecasting performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Huang G, Huang GB, Song S, You K (2015) Trends in extreme learning machines: a review. Neural Netw 61:32–48MATHCrossRef Huang G, Huang GB, Song S, You K (2015) Trends in extreme learning machines: a review. Neural Netw 61:32–48MATHCrossRef
2.
go back to reference Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1–3):489–501 Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1–3):489–501
3.
go back to reference Wu J, Wang YG, Tian YC, Burrage K, Cao T (2021) Support vector regression with asymmetric loss for optimal electric load forecasting. Energy 223:119969CrossRef Wu J, Wang YG, Tian YC, Burrage K, Cao T (2021) Support vector regression with asymmetric loss for optimal electric load forecasting. Energy 223:119969CrossRef
4.
go back to reference Reddy AVN, Krishna CP, Mallick PK (2019) An image classification framework exploring the capabilities of extreme learning machines and artificial bee colony. In: Neural computing and applications, pp 1–21 Reddy AVN, Krishna CP, Mallick PK (2019) An image classification framework exploring the capabilities of extreme learning machines and artificial bee colony. In: Neural computing and applications, pp 1–21
5.
go back to reference Sun ZL, Choi TM, Au KF, Yu Y (2008) Sales forecasting using extreme learning machine with applications in fashion retailing. Decis Support Syst 46(1):411–419CrossRef Sun ZL, Choi TM, Au KF, Yu Y (2008) Sales forecasting using extreme learning machine with applications in fashion retailing. Decis Support Syst 46(1):411–419CrossRef
6.
go back to reference Hornik K (1993) Some new results on neural network approximation. Neural Netw 6(8):1069–1072CrossRef Hornik K (1993) Some new results on neural network approximation. Neural Netw 6(8):1069–1072CrossRef
7.
go back to reference Martínez-Martínez JM, Escandell-Montero P, Soria-Olivas E, Martín-Guerrero JD, Magdalena-Benedito R, GóMez-Sanchis J (2011) Regularized extreme learning machine for regression problems. Neurocomputing 74(17):3716–3721CrossRef Martínez-Martínez JM, Escandell-Montero P, Soria-Olivas E, Martín-Guerrero JD, Magdalena-Benedito R, GóMez-Sanchis J (2011) Regularized extreme learning machine for regression problems. Neurocomputing 74(17):3716–3721CrossRef
8.
go back to reference Yıldırım H, Revan Özkale M (2021) Ll-elm: A regularized extreme learning machine based on \(l_1\)-norm and liu estimator. In: Neural computing and applications, 1–16 Yıldırım H, Revan Özkale M (2021) Ll-elm: A regularized extreme learning machine based on \(l_1\)-norm and liu estimator. In: Neural computing and applications, 1–16
9.
go back to reference Shao Z, Er MJ (2016) An online sequential learning algorithm for regularized extreme learning machine. Neurocomputing 173:778–788CrossRef Shao Z, Er MJ (2016) An online sequential learning algorithm for regularized extreme learning machine. Neurocomputing 173:778–788CrossRef
10.
go back to reference Zou W, Yao F, Zhang B, Guan Z (2018) Improved meta-elm with error feedback incremental elm as hidden nodes. Neural Comput Appl 30(11):3363–3370CrossRef Zou W, Yao F, Zhang B, Guan Z (2018) Improved meta-elm with error feedback incremental elm as hidden nodes. Neural Comput Appl 30(11):3363–3370CrossRef
11.
go back to reference Xu Z, Yao M, Wu Z, Dai W (2016) Incremental regularized extreme learning machine and its enhancement. Neurocomputing 174:134–142CrossRef Xu Z, Yao M, Wu Z, Dai W (2016) Incremental regularized extreme learning machine and its enhancement. Neurocomputing 174:134–142CrossRef
12.
go back to reference Liu B, Xia SX, Meng FR, Zhou Y (2016) Manifold regularized extreme learning machine. Neural Comput Appl 27(2):255–269CrossRef Liu B, Xia SX, Meng FR, Zhou Y (2016) Manifold regularized extreme learning machine. Neural Comput Appl 27(2):255–269CrossRef
13.
go back to reference Horata P, Chiewchanwattana S, Sunat K (2013) Robust extreme learning machine. Neurocomputing 102:31–44CrossRef Horata P, Chiewchanwattana S, Sunat K (2013) Robust extreme learning machine. Neurocomputing 102:31–44CrossRef
14.
go back to reference Zhang K, Luo M (2015) Outlier-robust extreme learning machine for regression problems. Neurocomputing 151:1519–1527CrossRef Zhang K, Luo M (2015) Outlier-robust extreme learning machine for regression problems. Neurocomputing 151:1519–1527CrossRef
15.
go back to reference Chen K, Lv Q, Lu Y, Dou Y (2017) Robust regularized extreme learning machine for regression using iteratively reweighted least squares. Neurocomputing 230:345–358CrossRef Chen K, Lv Q, Lu Y, Dou Y (2017) Robust regularized extreme learning machine for regression using iteratively reweighted least squares. Neurocomputing 230:345–358CrossRef
16.
go back to reference Li R, Wang X, Lei L, Song Y (2018) \( l\_ \)\(21\)-norm based loss function and regularization extreme learning machine. IEEE Access 7:6575–6586 Li R, Wang X, Lei L, Song Y (2018) \( l\_ \)\(21\)-norm based loss function and regularization extreme learning machine. IEEE Access 7:6575–6586
17.
go back to reference Wang K, Pei H, Cao J, Zhong P (2020) Robust regularized extreme learning machine for regression with non-convex loss function via dc program. J Franklin Inst 357(11):7069–7091MathSciNetMATHCrossRef Wang K, Pei H, Cao J, Zhong P (2020) Robust regularized extreme learning machine for regression with non-convex loss function via dc program. J Franklin Inst 357(11):7069–7091MathSciNetMATHCrossRef
18.
go back to reference Gupta D, Hazarika BB, Berlin M (2020) Robust regularized extreme learning machine with asymmetric Huber loss function. Neural Comput Appl 32(16):12971–12998CrossRef Gupta D, Hazarika BB, Berlin M (2020) Robust regularized extreme learning machine with asymmetric Huber loss function. Neural Comput Appl 32(16):12971–12998CrossRef
19.
go back to reference Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 96(456):1348–1360MathSciNetMATHCrossRef Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 96(456):1348–1360MathSciNetMATHCrossRef
20.
go back to reference Kravchuk OY (2006) R-estimator of location of the generalized secant hyperbolic distribution. Commun Stat-Simul Comput® 35(1):1–18 Kravchuk OY (2006) R-estimator of location of the generalized secant hyperbolic distribution. Commun Stat-Simul Comput® 35(1):1–18
21.
22.
go back to reference Wang X, Jiang Y, Huang M, Zhang H (2013) Robust variable selection with exponential squared loss. J Am Stat Assoc 108(502):632–643MathSciNetMATHCrossRef Wang X, Jiang Y, Huang M, Zhang H (2013) Robust variable selection with exponential squared loss. J Am Stat Assoc 108(502):632–643MathSciNetMATHCrossRef
23.
go back to reference Yang L, Ren Z, Wang Y, Dong H (2017) A robust regression framework with Laplace kernel-induced loss. Neural Comput 29(11):3014–3039MathSciNetMATHCrossRef Yang L, Ren Z, Wang Y, Dong H (2017) A robust regression framework with Laplace kernel-induced loss. Neural Comput 29(11):3014–3039MathSciNetMATHCrossRef
24.
go back to reference Lu HJ, Zheng EH, Lu Y, Ma XP, Liu JY (2014) Elm-based gene expression classification with misclassification cost. Neural Comput Appl 25(3):525–531 Lu HJ, Zheng EH, Lu Y, Ma XP, Liu JY (2014) Elm-based gene expression classification with misclassification cost. Neural Comput Appl 25(3):525–531
25.
go back to reference Khelil K, Berrezzek F, Bouadjila T (2021) Ga-based design of optimal discrete wavelet filters for efficient wind speed forecasting. Neural Comput Appl 33(9):4373–4386CrossRef Khelil K, Berrezzek F, Bouadjila T (2021) Ga-based design of optimal discrete wavelet filters for efficient wind speed forecasting. Neural Comput Appl 33(9):4373–4386CrossRef
26.
go back to reference Xu Y, Dai Y, Dong ZY, Zhang R, Meng K (2013) Extreme learning machine-based predictor for real-time frequency stability assessment of electric power systems. Neural Comput Appl 22(3):501–508 Xu Y, Dai Y, Dong ZY, Zhang R, Meng K (2013) Extreme learning machine-based predictor for real-time frequency stability assessment of electric power systems. Neural Comput Appl 22(3):501–508
27.
go back to reference Hernández-Travieso JG, Travieso-González CM, Alonso-Hernández JB, Canino-Rodríguez JM, Ravelo-García AG (2019) Modeling a robust wind-speed forecasting to apply to wind-energy production. Neural Comput Appl 31(11):7891–7905CrossRef Hernández-Travieso JG, Travieso-González CM, Alonso-Hernández JB, Canino-Rodríguez JM, Ravelo-García AG (2019) Modeling a robust wind-speed forecasting to apply to wind-energy production. Neural Comput Appl 31(11):7891–7905CrossRef
28.
go back to reference Tang G, Wu Y, Li C, Wong PK, Xiao Z, An X (2020) A novel wind speed interval prediction based on error prediction method. IEEE Trans Industr Inf 16(11):6806–6815CrossRef Tang G, Wu Y, Li C, Wong PK, Xiao Z, An X (2020) A novel wind speed interval prediction based on error prediction method. IEEE Trans Industr Inf 16(11):6806–6815CrossRef
29.
go back to reference Gao S, Zhou M, Wang Y, Cheng J, Yachi H, Wang J (2018) Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction. IEEE Transa Neural Netw Learn Syst 30(2):601–614 Gao S, Zhou M, Wang Y, Cheng J, Yachi H, Wang J (2018) Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction. IEEE Transa Neural Netw Learn Syst 30(2):601–614
30.
go back to reference Zhang T, Lv C, Ma F, Zhao K, Wang H, O'Hare GM. A (2020) A photovoltaic power forecasting model based on dendritic neuron networks with the aid of wavelet transform. Neurocomputing 397:438–446CrossRef Zhang T, Lv C, Ma F, Zhao K, Wang H, O'Hare GM. A (2020) A photovoltaic power forecasting model based on dendritic neuron networks with the aid of wavelet transform. Neurocomputing 397:438–446CrossRef
31.
go back to reference Zhou T, Gao S, Wang J, Chu C, Todo Y, Tang Z (2016) Financial time series prediction using a dendritic neuron model. Knowl-Based Syst 105:214–224CrossRef Zhou T, Gao S, Wang J, Chu C, Todo Y, Tang Z (2016) Financial time series prediction using a dendritic neuron model. Knowl-Based Syst 105:214–224CrossRef
32.
go back to reference He H, Gao S, Jin T, Sato S, Zhang X (2021) A seasonal-trend decomposition-based dendritic neuron model for financial time series prediction. Appl Soft Comput 108:10788 He H, Gao S, Jin T, Sato S, Zhang X (2021) A seasonal-trend decomposition-based dendritic neuron model for financial time series prediction. Appl Soft Comput 108:10788
33.
go back to reference Xing H, Wang G, Liu C, Suo M (2021) Pm2. 5 concentration modeling and prediction by using temperature-based deep belief network. Neural Netw 133:157–165CrossRef Xing H, Wang G, Liu C, Suo M (2021) Pm2. 5 concentration modeling and prediction by using temperature-based deep belief network. Neural Netw 133:157–165CrossRef
34.
go back to reference Yan W (2012) Toward automatic time-series forecasting using neural networks. IEEE Transa Neural Netw Learn Syst 23(7):1028–1039CrossRef Yan W (2012) Toward automatic time-series forecasting using neural networks. IEEE Transa Neural Netw Learn Syst 23(7):1028–1039CrossRef
35.
go back to reference Liu H, Mi X, Li Y (2018) An experimental investigation of three new hybrid wind speed forecasting models using multi-decomposing strategy and elm algorithm. Renew Energy 123:694–705CrossRef Liu H, Mi X, Li Y (2018) An experimental investigation of three new hybrid wind speed forecasting models using multi-decomposing strategy and elm algorithm. Renew Energy 123:694–705CrossRef
36.
go back to reference Fu W, Wang K, Li C, Tan J (2019) Multi-step short-term wind speed forecasting approach based on multi-scale dominant ingredient chaotic analysis, improved hybrid gwo-sca optimization and elm. Energy Convers Manag 187:356–377CrossRef Fu W, Wang K, Li C, Tan J (2019) Multi-step short-term wind speed forecasting approach based on multi-scale dominant ingredient chaotic analysis, improved hybrid gwo-sca optimization and elm. Energy Convers Manag 187:356–377CrossRef
37.
go back to reference Zhang C, Zhou J, Li C, Fu W, Peng T (2017) A compound structure of elm based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting. Energy Convers Manag 143:360–376CrossRef Zhang C, Zhou J, Li C, Fu W, Peng T (2017) A compound structure of elm based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting. Energy Convers Manag 143:360–376CrossRef
38.
go back to reference Zhang C, Ding M, Wang W, Bi R, Miao L, Yu H, Liu L (2019) An improved elm model based on CEEMD-LZC and manifold learning for short-term wind power prediction. IEEE Access 7:121472–121481CrossRef Zhang C, Ding M, Wang W, Bi R, Miao L, Yu H, Liu L (2019) An improved elm model based on CEEMD-LZC and manifold learning for short-term wind power prediction. IEEE Access 7:121472–121481CrossRef
39.
go back to reference Chen MR, Zeng GQ, Lu KD, Weng J (2019) A two-layer nonlinear combination method for short-term wind speed prediction based on ELM, ENN, and LSTM. IEEE Internet Things J 6(4):6997–7010CrossRef Chen MR, Zeng GQ, Lu KD, Weng J (2019) A two-layer nonlinear combination method for short-term wind speed prediction based on ELM, ENN, and LSTM. IEEE Internet Things J 6(4):6997–7010CrossRef
40.
go back to reference Wang J, Hu J (2015) A robust combination approach for short-term wind speed forecasting and analysis-combination of the ARIMA (autoregressive integrated moving average), ELM (extreme learning machine), SVM (support vector machine) and LSSVM (least square SVM) forecasts using a GPR (gaussian process regression) model. Energy 93:41–56CrossRef Wang J, Hu J (2015) A robust combination approach for short-term wind speed forecasting and analysis-combination of the ARIMA (autoregressive integrated moving average), ELM (extreme learning machine), SVM (support vector machine) and LSSVM (least square SVM) forecasts using a GPR (gaussian process regression) model. Energy 93:41–56CrossRef
41.
go back to reference Zhang D, Peng X, Pan K, Liu Y (2019) A novel wind speed forecasting based on hybrid decomposition and online sequential outlier robust extreme learning machine. Energy Convers Manag 180:338–357CrossRef Zhang D, Peng X, Pan K, Liu Y (2019) A novel wind speed forecasting based on hybrid decomposition and online sequential outlier robust extreme learning machine. Energy Convers Manag 180:338–357CrossRef
42.
go back to reference Zhang Y, Wang Y, Zhou G, Jin J, Wang B, Wang X, Cichocki A (2018) Multi-kernel extreme learning machine for EEG classification in brain-computer interfaces. Expert Syst Appl 96:302–310CrossRef Zhang Y, Wang Y, Zhou G, Jin J, Wang B, Wang X, Cichocki A (2018) Multi-kernel extreme learning machine for EEG classification in brain-computer interfaces. Expert Syst Appl 96:302–310CrossRef
43.
go back to reference Zhao H, Liu H, Xu J, Deng W (2019) Performance prediction using high-order differential mathematical morphology gradient spectrum entropy and extreme learning machine. IEEE Trans Instrum Meas 69(7):4165–4172 Zhao H, Liu H, Xu J, Deng W (2019) Performance prediction using high-order differential mathematical morphology gradient spectrum entropy and extreme learning machine. IEEE Trans Instrum Meas 69(7):4165–4172
44.
go back to reference Yaseen ZM, Sulaiman SO, Deo RC, Chau KW (2019) An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research direction. J Hydrol 569:387–408CrossRef Yaseen ZM, Sulaiman SO, Deo RC, Chau KW (2019) An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research direction. J Hydrol 569:387–408CrossRef
45.
go back to reference Maronna RA (1976) Robust m-estimators of multivariate location and scatter. Ann Stat 51–67 Maronna RA (1976) Robust m-estimators of multivariate location and scatter. Ann Stat 51–67
46.
go back to reference Beaton AE, Tukey JW (1974) The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data. Technometrics 16(2):147–185MATHCrossRef Beaton AE, Tukey JW (1974) The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data. Technometrics 16(2):147–185MATHCrossRef
47.
go back to reference Huber PJ et al (1973) Robust regression: asymptotics, conjectures and monte carlo. Ann Stat 1(5):799–821MathSciNetMATH Huber PJ et al (1973) Robust regression: asymptotics, conjectures and monte carlo. Ann Stat 1(5):799–821MathSciNetMATH
48.
go back to reference Jiang Y, Wang YG, Fu L, Wang X (2019) Robust estimation using modified Huber's functions with new tails. Technometrics 61(1):111–122MathSciNetCrossRef Jiang Y, Wang YG, Fu L, Wang X (2019) Robust estimation using modified Huber's functions with new tails. Technometrics 61(1):111–122MathSciNetCrossRef
49.
go back to reference Hoerl AE, Kennard RW (1970) Ridge regression: applications to nonorthogonal problems. Technometrics 12(1):69–82MATHCrossRef Hoerl AE, Kennard RW (1970) Ridge regression: applications to nonorthogonal problems. Technometrics 12(1):69–82MATHCrossRef
50.
go back to reference Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Roy Stat Soc: Ser B (Methodol) 58(1):267–288MathSciNetMATH Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Roy Stat Soc: Ser B (Methodol) 58(1):267–288MathSciNetMATH
51.
go back to reference Wang H, Li G, Jiang G (2007) Robust regression shrinkage and consistent variable selection through the lad-lasso. J Bus Econ Stat 25(3):347–355MathSciNetCrossRef Wang H, Li G, Jiang G (2007) Robust regression shrinkage and consistent variable selection through the lad-lasso. J Bus Econ Stat 25(3):347–355MathSciNetCrossRef
53.
go back to reference Wang L, Peng B, Bradic J, Li R, Wu Y (2020) A tuning-free robust and efficient approach to high-dimensional regression. J Am Stat Assoc 1–44 Wang L, Peng B, Bradic J, Li R, Wu Y (2020) A tuning-free robust and efficient approach to high-dimensional regression. J Am Stat Assoc 1–44
54.
go back to reference Wang YG, Lin X, Zhu M, Bai Z (2007) Robust estimation using the Huber function with a data-dependent tuning constant. J Comput Graph Stat 16(2):468–481MathSciNetCrossRef Wang YG, Lin X, Zhu M, Bai Z (2007) Robust estimation using the Huber function with a data-dependent tuning constant. J Comput Graph Stat 16(2):468–481MathSciNetCrossRef
55.
go back to reference Holland PW, Welsch RE (1977) Robust regression using iteratively reweighted least-squares. Commun Stat Theory Methods 6(9):813–827MATHCrossRef Holland PW, Welsch RE (1977) Robust regression using iteratively reweighted least-squares. Commun Stat Theory Methods 6(9):813–827MATHCrossRef
56.
go back to reference Friedman J, Hastie T, Tibshirani R et al (2000) Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). Ann Stat 28(2):337–407MATHCrossRef Friedman J, Hastie T, Tibshirani R et al (2000) Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). Ann Stat 28(2):337–407MATHCrossRef
57.
go back to reference Kou P, Wang C, Liang D, Cheng S, Gao L (2020) Deep learning approach for wind speed forecasts at turbine locations in a wind farm. IET Renew Power Gener 14(13):2416–2428CrossRef Kou P, Wang C, Liang D, Cheng S, Gao L (2020) Deep learning approach for wind speed forecasts at turbine locations in a wind farm. IET Renew Power Gener 14(13):2416–2428CrossRef
58.
go back to reference Moness M, Moustafa AM (2015) A survey of cyber-physical advances and challenges of wind energy conversion systems: prospects for internet of energy. IEEE Internet Things J 3(2):134–145MathSciNet Moness M, Moustafa AM (2015) A survey of cyber-physical advances and challenges of wind energy conversion systems: prospects for internet of energy. IEEE Internet Things J 3(2):134–145MathSciNet
59.
go back to reference Abedinia O, Lotfi M, Bagheri M, Sobhani B, Shafie-Khah M, Catalão JP (2020) Improved EMD-based complex prediction model for wind power forecasting. IEEE Trans Sustain Energy 11(4):2790–2802CrossRef Abedinia O, Lotfi M, Bagheri M, Sobhani B, Shafie-Khah M, Catalão JP (2020) Improved EMD-based complex prediction model for wind power forecasting. IEEE Trans Sustain Energy 11(4):2790–2802CrossRef
60.
go back to reference Hyndman RJ (2021) CRAN task view: time series analysis Hyndman RJ (2021) CRAN task view: time series analysis
61.
go back to reference Fu L, Wang YG, Cai F (2020) A working likelihood approach for robust regression. Stat Methods Med Res 29(12):3641–3652MathSciNetCrossRef Fu L, Wang YG, Cai F (2020) A working likelihood approach for robust regression. Stat Methods Med Res 29(12):3641–3652MathSciNetCrossRef
Metadata
Title
Robust penalized extreme learning machine regression with applications in wind speed forecasting
Authors
Yang Yang
Hu Zhou
Yuchao Gao
Jinran Wu
You-Gan Wang
Liya Fu
Publication date
09-08-2021
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 1/2022
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-021-06370-3

Other articles of this Issue 1/2022

Neural Computing and Applications 1/2022 Go to the issue

Premium Partner