Skip to main content
Top
Published in: Cognitive Computation 4/2023

28-01-2022

Robust Resting-State Dynamics in a Large-Scale Spiking Neural Network Model of Area CA3 in the Mouse Hippocampus

Authors: Jeffrey D. Kopsick, Carolina Tecuatl, Keivan Moradi, Sarojini M. Attili, Hirak J. Kashyap, Jinwei Xing, Kexin Chen, Jeffrey L. Krichmar, Giorgio A. Ascoli

Published in: Cognitive Computation | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hippocampal area CA3 performs the critical auto-associative function underlying pattern completion in episodic memory. Without external inputs, the electrical activity of this neural circuit reflects the spontaneous spiking interplay among glutamatergic Pyramidal neurons and GABAergic interneurons. However, the network mechanisms underlying these resting-state firing patterns are poorly understood. Leveraging the Hippocampome.​org knowledge base, we developed a data-driven, large-scale spiking neural network (SNN) model of mouse CA3 with 8 neuron types, 90,000 neurons, 51 neuron-type specific connections, and 250,000,000 synapses. We instantiated the SNN in the CARLsim4 multi-GPU simulation environment using the Izhikevich and Tsodyks-Markram formalisms for neuronal and synaptic dynamics, respectively. We analyzed the resultant population activity upon transient activation. The SNN settled into stable oscillations with a biologically plausible grand-average firing frequency, which was robust relative to a wide range of transient activation. The diverse firing patterns of individual neuron types were consistent with existing knowledge of cell type-specific activity in vivo. Altered network structures that lacked neuron- or connection-type specificity were neither stable nor robust, highlighting the importance of neuron type circuitry. Additionally, external inputs reflecting dentate mossy fibers shifted the observed rhythms to the gamma band. We freely released the CARLsim4-Hippocampome framework on GitHub to test hippocampal hypotheses. Our SNN may be useful to investigate the circuit mechanisms underlying the computational functions of CA3. Moreover, our approach can be scaled to the whole hippocampal formation, which may contribute to elucidating how the unique neuronal architecture of this system subserves its crucial cognitive roles.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry. 1957;20(1):11–21.CrossRef Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry. 1957;20(1):11–21.CrossRef
2.
go back to reference Nadel L, Moscovitch M. Memory consolidation retrograde amnesia and the hippocampal complex. Curr Opin Neurobiol. 1997;7(2):217–27.CrossRef Nadel L, Moscovitch M. Memory consolidation retrograde amnesia and the hippocampal complex. Curr Opin Neurobiol. 1997;7(2):217–27.CrossRef
3.
go back to reference Wang S-H, Morris RGM. Hippocampal-neocortical interactions in memory formation consolidation and reconsolidation. Annu Rev Psychol. 2010;61(1):49–79.CrossRef Wang S-H, Morris RGM. Hippocampal-neocortical interactions in memory formation consolidation and reconsolidation. Annu Rev Psychol. 2010;61(1):49–79.CrossRef
4.
go back to reference Vanderwolf CH. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol. 1969;26(4):407–18.CrossRef Vanderwolf CH. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol. 1969;26(4):407–18.CrossRef
5.
go back to reference Buzsáki G. Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus. 2015;25(10):1073–188.CrossRef Buzsáki G. Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus. 2015;25(10):1073–188.CrossRef
6.
go back to reference Murakami TC, Mano T, Saikawa S, Horiguchi SA, Shigeta D, Baba K, et al. A three-dimensional single-cell-resolution whole-brain atlas using CUBIC-X expansion microscopy and tissue clearing. Nat Neurosci. 2018;21(4):625–37.CrossRef Murakami TC, Mano T, Saikawa S, Horiguchi SA, Shigeta D, Baba K, et al. A three-dimensional single-cell-resolution whole-brain atlas using CUBIC-X expansion microscopy and tissue clearing. Nat Neurosci. 2018;21(4):625–37.CrossRef
7.
go back to reference Zhu F, Cizeron M, Qiu Z, Benavides-Piccione R, Kopanitsa MV, Skene NG, et al. Architecture of the mouse brain synaptome. Neuron. 2018;99(4):781–99.CrossRef Zhu F, Cizeron M, Qiu Z, Benavides-Piccione R, Kopanitsa MV, Skene NG, et al. Architecture of the mouse brain synaptome. Neuron. 2018;99(4):781–99.CrossRef
8.
go back to reference Armañanzas R, Ascoli GA. Towards the automatic classification of neurons. Trends Neurosci. 2015;38(5):307–18.CrossRef Armañanzas R, Ascoli GA. Towards the automatic classification of neurons. Trends Neurosci. 2015;38(5):307–18.CrossRef
9.
go back to reference The Petilla Interneuron Nomenclature Group (PING), Ascoli GA, Alonso-Nanclares L, Anderson SA, Barrionuevo G, Benavides-Piccione R, et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci. 2008;9(7):557–68.CrossRef The Petilla Interneuron Nomenclature Group (PING), Ascoli GA, Alonso-Nanclares L, Anderson SA, Barrionuevo G, Benavides-Piccione R, et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci. 2008;9(7):557–68.CrossRef
10.
go back to reference Wheeler DW, White CM, Rees CL, Komendantov AO, Hamilton DJ, Ascoli GA. Hippocampome.org: a knowledge base of neuron types in the rodent hippocampus. elife. 2015;4:e09960. Wheeler DW, White CM, Rees CL, Komendantov AO, Hamilton DJ, Ascoli GA. Hippocampome.org: a knowledge base of neuron types in the rodent hippocampus. elife. 2015;4:e09960.
11.
go back to reference Ascoli GA, Wheeler DW. In search of a periodic table of the neurons: axonal-dendritic circuitry as the organizing principle. BioEssays. 2016;38(10):969–76.CrossRef Ascoli GA, Wheeler DW. In search of a periodic table of the neurons: axonal-dendritic circuitry as the organizing principle. BioEssays. 2016;38(10):969–76.CrossRef
12.
go back to reference Rees CL, Moradi K, Ascoli GA. Weighing the evidence in Peters’ rule: does neuronal morphology predict connectivity? Trends Neurosci. 2017;40(2):63–71.CrossRef Rees CL, Moradi K, Ascoli GA. Weighing the evidence in Peters’ rule: does neuronal morphology predict connectivity? Trends Neurosci. 2017;40(2):63–71.CrossRef
13.
go back to reference Moradi K, Ascoli GA. Systematic data mining of hippocampal synaptic properties. In: Cutsuridis V, Graham BP, Cobb S, Vida I, editors. Hippocampal Microcircuits: A Computational Modeler’s Resource Book. Cham: Springer International Publishing; 2018. p. 441–71 (Springer Series in Computational Neuroscience).CrossRef Moradi K, Ascoli GA. Systematic data mining of hippocampal synaptic properties. In: Cutsuridis V, Graham BP, Cobb S, Vida I, editors. Hippocampal Microcircuits: A Computational Modeler’s Resource Book. Cham: Springer International Publishing; 2018. p. 441–71 (Springer Series in Computational Neuroscience).CrossRef
14.
go back to reference Rees CL, Wheeler DW, Hamilton DJ, White CM, Komendantov AO, Ascoli GA. Graph theoretic and motif analyses of the hippocampal neuron type potential connectome. eNeuro. 2016;3(6). Rees CL, Wheeler DW, Hamilton DJ, White CM, Komendantov AO, Ascoli GA. Graph theoretic and motif analyses of the hippocampal neuron type potential connectome. eNeuro. 2016;3(6).
15.
go back to reference White CM, Rees CL, Wheeler DW, Hamilton DJ, Ascoli GA. Molecular expression profiles of morphologically defined hippocampal neuron types: empirical evidence and relational inferences. Hippocampus. 2020;30(5):472–87.CrossRef White CM, Rees CL, Wheeler DW, Hamilton DJ, Ascoli GA. Molecular expression profiles of morphologically defined hippocampal neuron types: empirical evidence and relational inferences. Hippocampus. 2020;30(5):472–87.CrossRef
16.
go back to reference Komendantov AO, Venkadesh S, Rees CL, Wheeler DW, Hamilton DJ, Ascoli GA. Quantitative firing pattern phenotyping of hippocampal neuron types. Sci Rep. 2019;9:17915.CrossRef Komendantov AO, Venkadesh S, Rees CL, Wheeler DW, Hamilton DJ, Ascoli GA. Quantitative firing pattern phenotyping of hippocampal neuron types. Sci Rep. 2019;9:17915.CrossRef
17.
go back to reference Ascoli GA. The coming of age of the hippocampome. Neuroinformatics. 2010;8(1):1–3.CrossRef Ascoli GA. The coming of age of the hippocampome. Neuroinformatics. 2010;8(1):1–3.CrossRef
18.
go back to reference Attili SM, Silva MFM, Nguyen T, Ascoli GA. Cell numbers distribution shape and regional variation throughout the murine hippocampal formation from the adult brain Allen Reference Atlas. Brain Struct Funct. 2019;224(8):2883–97.CrossRef Attili SM, Silva MFM, Nguyen T, Ascoli GA. Cell numbers distribution shape and regional variation throughout the murine hippocampal formation from the adult brain Allen Reference Atlas. Brain Struct Funct. 2019;224(8):2883–97.CrossRef
19.
go back to reference Venkadesh S, Komendantov AO, Listopad S, Scott EO, De Jong K, Krichmar JL, et al. Evolving simple models of diverse intrinsic dynamics in hippocampal neuron types. Front Neuroinform. 2018;12:8.CrossRef Venkadesh S, Komendantov AO, Listopad S, Scott EO, De Jong K, Krichmar JL, et al. Evolving simple models of diverse intrinsic dynamics in hippocampal neuron types. Front Neuroinform. 2018;12:8.CrossRef
20.
go back to reference Tecuatl C, Wheeler DW, Sutton N, Ascoli GA. Comprehensive estimates of potential synaptic connections in local circuits of the rodent hippocampal formation by axonal-dendritic overlap. J Neurosci. 2021;41(8):1665–83.CrossRef Tecuatl C, Wheeler DW, Sutton N, Ascoli GA. Comprehensive estimates of potential synaptic connections in local circuits of the rodent hippocampal formation by axonal-dendritic overlap. J Neurosci. 2021;41(8):1665–83.CrossRef
21.
go back to reference Moradi K, Ascoli GA. A comprehensive knowledge base of synaptic electrophysiology in the rodent hippocampal formation. Hippocampus. 2020;30(4):314–31.CrossRef Moradi K, Ascoli GA. A comprehensive knowledge base of synaptic electrophysiology in the rodent hippocampal formation. Hippocampus. 2020;30(4):314–31.CrossRef
22.
go back to reference Dehghani N, Peyrache A, Telenczuk B, Le Van QM, Halgren E, Cash SS, et al. Dynamic balance of excitation and inhibition in human and monkey neocortex. Sci Rep. 2016;6(1):23176.CrossRef Dehghani N, Peyrache A, Telenczuk B, Le Van QM, Halgren E, Cash SS, et al. Dynamic balance of excitation and inhibition in human and monkey neocortex. Sci Rep. 2016;6(1):23176.CrossRef
23.
go back to reference He H, Cline HT. What is excitation/inhibition and how is it regulated? A case of the elephant and the wisemen. J Exp Neurosci. 2019;13. He H, Cline HT. What is excitation/inhibition and how is it regulated? A case of the elephant and the wisemen. J Exp Neurosci. 2019;13.
24.
go back to reference Dyhrfjeld-Johnsen J, Santhakumar V, Morgan RJ, Huerta R, Tsimring L, Soltesz I. Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data. J Neurophysiol. 2007;97(2):1566–87.CrossRef Dyhrfjeld-Johnsen J, Santhakumar V, Morgan RJ, Huerta R, Tsimring L, Soltesz I. Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data. J Neurophysiol. 2007;97(2):1566–87.CrossRef
25.
go back to reference Hendrickson PJ, Yu GJ, Song D, Berger TW. A million-plus neuron model of the hippocampal dentate gyrus: dependency of spatio-temporal network dynamics on topography. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:4713–6. Hendrickson PJ, Yu GJ, Song D, Berger TW. A million-plus neuron model of the hippocampal dentate gyrus: dependency of spatio-temporal network dynamics on topography. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:4713–6.
26.
go back to reference Bezaire MJ, Soltesz I. Quantitative assessment of CA1 local circuits: knowledge base for interneuron-pyramidal cell connectivity. Hippocampus. 2013;23(9):751–85.CrossRef Bezaire MJ, Soltesz I. Quantitative assessment of CA1 local circuits: knowledge base for interneuron-pyramidal cell connectivity. Hippocampus. 2013;23(9):751–85.CrossRef
27.
go back to reference Yu GJ, Feng Z, Berger TW. Network activity due to topographic organization of Schaffer collaterals in a large-scale model of rat CA1. Conf Proc IEEE Eng Med Biol Soc. 2019;2019:2977–80. Yu GJ, Feng Z, Berger TW. Network activity due to topographic organization of Schaffer collaterals in a large-scale model of rat CA1. Conf Proc IEEE Eng Med Biol Soc. 2019;2019:2977–80.
28.
go back to reference Chou T, Kashyap HJ, Xing J, Listopad S, Rounds EL, Beyeler M, et al. CARLsim 4: an open source library for large scale biologically detailed spiking neural network simulation using heterogeneous clusters. In: 2018 International Joint Conference on Neural Networks (IJCNN). 2018. p. 1–8. Chou T, Kashyap HJ, Xing J, Listopad S, Rounds EL, Beyeler M, et al. CARLsim 4: an open source library for large scale biologically detailed spiking neural network simulation using heterogeneous clusters. In: 2018 International Joint Conference on Neural Networks (IJCNN). 2018. p. 1–8.
29.
go back to reference Izhikevich EM. Dynamical Systems in Neuroscience. Cambridge: MIT Press; 2007. p. 522. Izhikevich EM. Dynamical Systems in Neuroscience. Cambridge: MIT Press; 2007. p. 522.
30.
go back to reference Venkadesh S, Komendantov AO, Wheeler DW, Hamilton DJ, Ascoli GA. Simple models of quantitative firing phenotypes in hippocampal neurons: comprehensive coverage of intrinsic diversity. PLOS Comput Biol. 2019;15(10):e1007462. Venkadesh S, Komendantov AO, Wheeler DW, Hamilton DJ, Ascoli GA. Simple models of quantitative firing phenotypes in hippocampal neurons: comprehensive coverage of intrinsic diversity. PLOS Comput Biol. 2019;15(10):e1007462.
31.
go back to reference Attili SM, Mackesey ST, Ascoli GA. Operations research methods for estimating the population size of neuron types. Ann Oper Res. 2020;289(1):33–50.MathSciNetMATHCrossRef Attili SM, Mackesey ST, Ascoli GA. Operations research methods for estimating the population size of neuron types. Ann Oper Res. 2020;289(1):33–50.MathSciNetMATHCrossRef
33.
go back to reference Mongillo G, Barak O, Tsodyks M. Synaptic theory of working memory. Science. 2008;319(5869):1543–6.CrossRef Mongillo G, Barak O, Tsodyks M. Synaptic theory of working memory. Science. 2008;319(5869):1543–6.CrossRef
34.
go back to reference Senn W, Markram H, Tsodyks M. An algorithm for modifying neurotransmitter release probability based on pre- and postsynaptic spike timing. Neural Comput. 2001;13(1):35–67.MATHCrossRef Senn W, Markram H, Tsodyks M. An algorithm for modifying neurotransmitter release probability based on pre- and postsynaptic spike timing. Neural Comput. 2001;13(1):35–67.MATHCrossRef
35.
go back to reference Tsodyks M, Pawelzik K, Markram H. Neural networks with dynamic synapses. Neural Comput. 1998;10(4):821–35.CrossRef Tsodyks M, Pawelzik K, Markram H. Neural networks with dynamic synapses. Neural Comput. 1998;10(4):821–35.CrossRef
36.
go back to reference Tecuatl C, Wheeler DW, Ascoli GA. A method for estimating the potential synaptic connections between axons and dendrites from 2D neuronal images. Bio-Protoc. 2021;11(13):e4073–e4073. Tecuatl C, Wheeler DW, Ascoli GA. A method for estimating the potential synaptic connections between axons and dendrites from 2D neuronal images. Bio-Protoc. 2021;11(13):e4073–e4073.
37.
go back to reference Soleng AF, Raastad M, Andersen P. Conduction latency along CA3 hippocampal axons from rat. Hippocampus. 2003;13(8):953–61.CrossRef Soleng AF, Raastad M, Andersen P. Conduction latency along CA3 hippocampal axons from rat. Hippocampus. 2003;13(8):953–61.CrossRef
38.
go back to reference Sosa M, Joo HR, Frank LM. Dorsal and ventral hippocampal sharp-wave ripples activate distinct nucleus accumbens networks. Neuron. 2020;105(4):725–41.CrossRef Sosa M, Joo HR, Frank LM. Dorsal and ventral hippocampal sharp-wave ripples activate distinct nucleus accumbens networks. Neuron. 2020;105(4):725–41.CrossRef
39.
go back to reference Taxidis J, Coombes S, Mason R, Owen MR. Modeling sharp wave-ripple complexes through a CA3-CA1 network model with chemical synapses. Hippocampus. 2012;22(5):995–1017.CrossRef Taxidis J, Coombes S, Mason R, Owen MR. Modeling sharp wave-ripple complexes through a CA3-CA1 network model with chemical synapses. Hippocampus. 2012;22(5):995–1017.CrossRef
40.
go back to reference Willmore B, Tolhurst DJ. Characterizing the sparseness of neural codes. Network. 2001;12(3):255–70.CrossRef Willmore B, Tolhurst DJ. Characterizing the sparseness of neural codes. Network. 2001;12(3):255–70.CrossRef
41.
go back to reference Berens P. CircStat: A MATLAB toolbox for circular statistics. J Stat Softw. 2009;31(1):1–21. Berens P. CircStat: A MATLAB toolbox for circular statistics. J Stat Softw. 2009;31(1):1–21.
42.
go back to reference Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I. Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. eLife. 2016;5:e18566. Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I. Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. eLife. 2016;5:e18566.
43.
go back to reference Gerstner W, Kistler WM, Naud R, Paninski L. Neuronal dynamics: from single neurons to networks and models of cognition. Cambridge: Cambridge University Press; 2014. p. 591.CrossRef Gerstner W, Kistler WM, Naud R, Paninski L. Neuronal dynamics: from single neurons to networks and models of cognition. Cambridge: Cambridge University Press; 2014. p. 591.CrossRef
44.
go back to reference Evstratova A, Tóth K. Information processing and synaptic plasticity at hippocampal mossy fiber terminals. Front Cell Neurosci. 2014;8:28.CrossRef Evstratova A, Tóth K. Information processing and synaptic plasticity at hippocampal mossy fiber terminals. Front Cell Neurosci. 2014;8:28.CrossRef
45.
go back to reference Mizuseki K, Buzsáki G. Preconfigured skewed distribution of firing rates in the hippocampus and entorhinal cortex. Cell Rep. 2013;4(5):1010–21.CrossRef Mizuseki K, Buzsáki G. Preconfigured skewed distribution of firing rates in the hippocampus and entorhinal cortex. Cell Rep. 2013;4(5):1010–21.CrossRef
46.
go back to reference Marr D. Vision: a computational investigation into the human representation and processing of visual information. Cambridge: MIT Press; 1982. p. 428. Marr D. Vision: a computational investigation into the human representation and processing of visual information. Cambridge: MIT Press; 1982. p. 428.
47.
go back to reference Kriegeskorte N, Douglas PK. Cognitive computational neuroscience. Nat Neurosci. 2018;21(9):1148–60.CrossRef Kriegeskorte N, Douglas PK. Cognitive computational neuroscience. Nat Neurosci. 2018;21(9):1148–60.CrossRef
48.
go back to reference Jinno S, Kosaka T. Stereological estimation of numerical densities of glutamatergic principal neurons in the mouse hippocampus. Hippocampus. 2010;20(7):829–40. Jinno S, Kosaka T. Stereological estimation of numerical densities of glutamatergic principal neurons in the mouse hippocampus. Hippocampus. 2010;20(7):829–40.
49.
go back to reference Shadlen MN, Newsome WT. The variable discharge of cortical neurons: implications for connectivity computation and information coding. J Neurosci. 1998;18(10):3870–96.CrossRef Shadlen MN, Newsome WT. The variable discharge of cortical neurons: implications for connectivity computation and information coding. J Neurosci. 1998;18(10):3870–96.CrossRef
50.
go back to reference Colgin LL. Rhythms of the hippocampal network. Nat Rev Neurosci. 2016;17(4):239–49.CrossRef Colgin LL. Rhythms of the hippocampal network. Nat Rev Neurosci. 2016;17(4):239–49.CrossRef
51.
go back to reference Dugladze T, Schmitz D, Whittington MA, Vida I, Gloveli T. Segregation of axonal and somatic activity during fast network oscillations. Science. 2012;336(6087):1458–61.CrossRef Dugladze T, Schmitz D, Whittington MA, Vida I, Gloveli T. Segregation of axonal and somatic activity during fast network oscillations. Science. 2012;336(6087):1458–61.CrossRef
52.
go back to reference Huang Y-C, Wang C-T, Su T-S, Kao K-W, Lin Y-J, Chuang C-C, et al. A Single-Cell Level and Connectome-Derived Computational Model of the Drosophila Brain. Front Neuroinform. 2019;12:99.CrossRef Huang Y-C, Wang C-T, Su T-S, Kao K-W, Lin Y-J, Chuang C-C, et al. A Single-Cell Level and Connectome-Derived Computational Model of the Drosophila Brain. Front Neuroinform. 2019;12:99.CrossRef
53.
go back to reference Trimper JB, Galloway CR, Jones AC, Mandi K, Manns JR. Gamma oscillations in rat hippocampal subregions dentate gyrus, CA3, CA1, and subiculum underlie associative memory encoding. Cell Rep. 2017;21(9):2419–32.CrossRef Trimper JB, Galloway CR, Jones AC, Mandi K, Manns JR. Gamma oscillations in rat hippocampal subregions dentate gyrus, CA3, CA1, and subiculum underlie associative memory encoding. Cell Rep. 2017;21(9):2419–32.CrossRef
54.
go back to reference Sullivan D, Csicsvari J, Mizuseki K, Montgomery S, Diba K, Buzsáki G. Relationships between hippocampal sharp waves, ripples, and fast gamma oscillation: influence of dentate and entorhinal cortical activity. J Neurosci. 2011;31(23):8605–16.CrossRef Sullivan D, Csicsvari J, Mizuseki K, Montgomery S, Diba K, Buzsáki G. Relationships between hippocampal sharp waves, ripples, and fast gamma oscillation: influence of dentate and entorhinal cortical activity. J Neurosci. 2011;31(23):8605–16.CrossRef
55.
go back to reference ter Wal M, Tiesinga P. Hippocampal oscillations mechanisms (PING ING Sparse). In: Jaeger D, Jung R, editors. Encyclopedia of Computational Neuroscience. New York: Springer; 2013. p. 1–14. ter Wal M, Tiesinga P. Hippocampal oscillations mechanisms (PING ING Sparse). In: Jaeger D, Jung R, editors. Encyclopedia of Computational Neuroscience. New York: Springer; 2013. p. 1–14.
56.
go back to reference Tukker JJ, Lasztóczi B, Katona L, Roberts JDB, Pissadaki EK, Dalezios Y, et al. Distinct dendritic arborization and in vivo firing patterns of parvalbumin-expressing basket cells in the hippocampal area CA3. J Neurosci. 2013;33(16):6809–25.CrossRef Tukker JJ, Lasztóczi B, Katona L, Roberts JDB, Pissadaki EK, Dalezios Y, et al. Distinct dendritic arborization and in vivo firing patterns of parvalbumin-expressing basket cells in the hippocampal area CA3. J Neurosci. 2013;33(16):6809–25.CrossRef
57.
go back to reference Viney TJ, Lasztoczi B, Katona L, Crump MG, Tukker JJ, Klausberger T, et al. Network state-dependent inhibition of identified hippocampal CA3 axo-axonic cells in vivo. Nat Neurosci. 2013;16(12):1802–11.CrossRef Viney TJ, Lasztoczi B, Katona L, Crump MG, Tukker JJ, Klausberger T, et al. Network state-dependent inhibition of identified hippocampal CA3 axo-axonic cells in vivo. Nat Neurosci. 2013;16(12):1802–11.CrossRef
58.
go back to reference Fuentealba P, Begum R, Capogna M, Jinno S, Márton LF, Csicsvari J, et al. Ivy cells: a population of nitric-oxide-producing, slow-spiking GABAergic neurons and their involvement in hippocampal network activity. Neuron. 2008;57(6):917–29.CrossRef Fuentealba P, Begum R, Capogna M, Jinno S, Márton LF, Csicsvari J, et al. Ivy cells: a population of nitric-oxide-producing, slow-spiking GABAergic neurons and their involvement in hippocampal network activity. Neuron. 2008;57(6):917–29.CrossRef
59.
go back to reference Hájos N, Pálhalmi J, Mann EO, Németh B, Paulsen O, Freund TF. Spike timing of distinct types of GABAergic Interneuron during hippocampal gamma oscillations in vitro. J Neurosci. 2004;24(41):9127–37.CrossRef Hájos N, Pálhalmi J, Mann EO, Németh B, Paulsen O, Freund TF. Spike timing of distinct types of GABAergic Interneuron during hippocampal gamma oscillations in vitro. J Neurosci. 2004;24(41):9127–37.CrossRef
60.
go back to reference Lasztóczi B, Tukker JJ, Somogyi P, Klausberger T. Terminal field and firing selectivity of cholecystokinin-expressing interneurons in the hippocampal CA3 area. J Neurosci. 2011;31(49):18073–93.CrossRef Lasztóczi B, Tukker JJ, Somogyi P, Klausberger T. Terminal field and firing selectivity of cholecystokinin-expressing interneurons in the hippocampal CA3 area. J Neurosci. 2011;31(49):18073–93.CrossRef
61.
go back to reference Hefft S, Jonas P. Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron–principal neuron synapse. Nat Neurosci. 2005;8(10):1319–28.CrossRef Hefft S, Jonas P. Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron–principal neuron synapse. Nat Neurosci. 2005;8(10):1319–28.CrossRef
62.
go back to reference Lazarewicz MT, Migliore M, Ascoli GA. A new bursting model of CA3 pyramidal cell physiology suggests multiple locations for spike initiation. Biosystems. 2002;67(1):129–37.CrossRef Lazarewicz MT, Migliore M, Ascoli GA. A new bursting model of CA3 pyramidal cell physiology suggests multiple locations for spike initiation. Biosystems. 2002;67(1):129–37.CrossRef
63.
go back to reference Hemond P, Epstein D, Boley A, Migliore M, Ascoli GA, Jaffe DB. Distinct classes of pyramidal cells exhibit mutually exclusive firing patterns in hippocampal area CA3b. Hippocampus. 2008;18(4):411–24.CrossRef Hemond P, Epstein D, Boley A, Migliore M, Ascoli GA, Jaffe DB. Distinct classes of pyramidal cells exhibit mutually exclusive firing patterns in hippocampal area CA3b. Hippocampus. 2008;18(4):411–24.CrossRef
64.
go back to reference Neymotin SA, Lazarewicz MT, Sherif M, Contreras D, Finkel LH, Lytton WW. Ketamine disrupts theta modulation of gamma in a computer model of hippocampus. J Neurosci. 2011;31(32):11733–43.CrossRef Neymotin SA, Lazarewicz MT, Sherif M, Contreras D, Finkel LH, Lytton WW. Ketamine disrupts theta modulation of gamma in a computer model of hippocampus. J Neurosci. 2011;31(32):11733–43.CrossRef
65.
go back to reference Kumbhar P, Hines M, Fouriaux J, Ovcharenko A, King J, Delalondre F, et al. CoreNEURON: an optimized compute engine for the NEURON simulator. Front Neuroinform. 2019;13:63.CrossRef Kumbhar P, Hines M, Fouriaux J, Ovcharenko A, King J, Delalondre F, et al. CoreNEURON: an optimized compute engine for the NEURON simulator. Front Neuroinform. 2019;13:63.CrossRef
66.
go back to reference Yu GJ, Bouteiller J-MC, Berger TW. Topographic organization of correlation along the longitudinal and transverse axes in rat hippocampal CA3 due to excitatory afferents. Front Comput Neurosci. 2020;14:588881. Yu GJ, Bouteiller J-MC, Berger TW. Topographic organization of correlation along the longitudinal and transverse axes in rat hippocampal CA3 due to excitatory afferents. Front Comput Neurosci. 2020;14:588881.
67.
go back to reference Zheng P, Dimitrakakis C, Triesch J. Network self-organization explains the statistics and dynamics of synaptic connection strengths in cortex. PLOS Comput Biol. 2013;9(1):e1002848. Zheng P, Dimitrakakis C, Triesch J. Network self-organization explains the statistics and dynamics of synaptic connection strengths in cortex. PLOS Comput Biol. 2013;9(1):e1002848.
68.
go back to reference Sanchez-Aguilera A, Wheeler DW, Jurado-Parras T, Valero M, Nokia MS, Cid E, et al. An update to Hippocampome.org by integrating single-cell phenotypes with circuit function in vivo. PLOS Biol. 2021;19(5):e3001213. Sanchez-Aguilera A, Wheeler DW, Jurado-Parras T, Valero M, Nokia MS, Cid E, et al. An update to Hippocampome.org by integrating single-cell phenotypes with circuit function in vivo. PLOS Biol. 2021;19(5):e3001213.
69.
go back to reference Oren I, Mann EO, Paulsen O, Hájos N. Synaptic currents in anatomically identified CA3 neurons during hippocampal gamma oscillations in vitro. J Neurosci. 2006;26(39):9923–34.CrossRef Oren I, Mann EO, Paulsen O, Hájos N. Synaptic currents in anatomically identified CA3 neurons during hippocampal gamma oscillations in vitro. J Neurosci. 2006;26(39):9923–34.CrossRef
70.
go back to reference Kay K, Sosa M, Chung JE, Karlsson MP, Larkin MC, Frank LM. A hippocampal network for spatial coding during immobility and sleep. Nature. 2016;531(7593):185–90.CrossRef Kay K, Sosa M, Chung JE, Karlsson MP, Larkin MC, Frank LM. A hippocampal network for spatial coding during immobility and sleep. Nature. 2016;531(7593):185–90.CrossRef
71.
go back to reference Oliva A, Fernández-Ruiz A, Buzsáki G, Berényi A. Spatial coding and physiological properties of hippocampal neurons in the Cornu Ammonis subregions. Hippocampus. 2016;26(12):1593–607.CrossRef Oliva A, Fernández-Ruiz A, Buzsáki G, Berényi A. Spatial coding and physiological properties of hippocampal neurons in the Cornu Ammonis subregions. Hippocampus. 2016;26(12):1593–607.CrossRef
72.
go back to reference Ding L, Chen H, Diamantaki M, Coletta S, Preston-Ferrer P, Burgalossi A. Structural correlates of CA2 and CA3 pyramidal cell activity in freely-moving mice. J Neurosci. 2020;40(30):5797–806.CrossRef Ding L, Chen H, Diamantaki M, Coletta S, Preston-Ferrer P, Burgalossi A. Structural correlates of CA2 and CA3 pyramidal cell activity in freely-moving mice. J Neurosci. 2020;40(30):5797–806.CrossRef
73.
go back to reference Lapray D, Lasztoczi B, Lagler M, Viney TJ, Katona L, Valenti O, et al. Behavior-dependent specialization of identified hippocampal interneurons. Nat Neurosci. 2012;15(9):1265–71.CrossRef Lapray D, Lasztoczi B, Lagler M, Viney TJ, Katona L, Valenti O, et al. Behavior-dependent specialization of identified hippocampal interneurons. Nat Neurosci. 2012;15(9):1265–71.CrossRef
74.
go back to reference Varga C, Golshani P, Soltesz I. Frequency-invariant temporal ordering of interneuronal discharges during hippocampal oscillations in awake mice. PNAS. 2012;109(40):E2726–34.CrossRef Varga C, Golshani P, Soltesz I. Frequency-invariant temporal ordering of interneuronal discharges during hippocampal oscillations in awake mice. PNAS. 2012;109(40):E2726–34.CrossRef
75.
go back to reference Klausberger T, Márton LF, Baude A, Roberts JDB, Magill PJ, Somogyi P. Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo. Nat Neurosci. 2004;7(1):41–7.CrossRef Klausberger T, Márton LF, Baude A, Roberts JDB, Magill PJ, Somogyi P. Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo. Nat Neurosci. 2004;7(1):41–7.CrossRef
76.
go back to reference Katona L, Lapray D, Viney TJ, Oulhaj A, Borhegyi Z, Micklem BR, et al. Sleep and movement differentiates actions of two types of somatostatin-expressing GABAergic interneuron in rat hippocampus. Neuron. 2014;82(4):872–86.CrossRef Katona L, Lapray D, Viney TJ, Oulhaj A, Borhegyi Z, Micklem BR, et al. Sleep and movement differentiates actions of two types of somatostatin-expressing GABAergic interneuron in rat hippocampus. Neuron. 2014;82(4):872–86.CrossRef
78.
go back to reference Lisman JE, Jensen O. The Theta-gamma neural code. Neuron. 2013;77(6):1002–16.CrossRef Lisman JE, Jensen O. The Theta-gamma neural code. Neuron. 2013;77(6):1002–16.CrossRef
79.
go back to reference Josh Lawrence J, Cobb S. Neuromodulation of hippocampal cells and circuits. In: Cutsuridis V, Graham BP, Cobb S, Vida I, editors. Hippocampal Microcircuits: A Computational Modeler’s Resource Book. New York: Springer International Publishing; 2018. p. 227–325 (Springer Series in Computational Neuroscience).CrossRef Josh Lawrence J, Cobb S. Neuromodulation of hippocampal cells and circuits. In: Cutsuridis V, Graham BP, Cobb S, Vida I, editors. Hippocampal Microcircuits: A Computational Modeler’s Resource Book. New York: Springer International Publishing; 2018. p. 227–325 (Springer Series in Computational Neuroscience).CrossRef
80.
go back to reference Nadim F, Bucher D. Neuromodulation of neurons and synapses. Curr Opin Neurobiol. 2014;29:48–56.CrossRef Nadim F, Bucher D. Neuromodulation of neurons and synapses. Curr Opin Neurobiol. 2014;29:48–56.CrossRef
81.
go back to reference Sporns O, Kötter R. Motifs in Brain Networks. PLOS Biol. 2004;2(11):e369. Sporns O, Kötter R. Motifs in Brain Networks. PLOS Biol. 2004;2(11):e369.
82.
go back to reference Guzman SJ, Schlögl A, Frotscher M, Jonas P. Synaptic mechanisms of pattern completion in the hippocampal CA3 network. Science. 2016;353(6304):1117–23.CrossRef Guzman SJ, Schlögl A, Frotscher M, Jonas P. Synaptic mechanisms of pattern completion in the hippocampal CA3 network. Science. 2016;353(6304):1117–23.CrossRef
83.
go back to reference Patel J, Fujisawa S, Berényi A, Royer S, Buzsáki G. Traveling theta waves along the entire septotemporal axis of the hippocampus. Neuron. 2012;75(3):410–7.CrossRef Patel J, Fujisawa S, Berényi A, Royer S, Buzsáki G. Traveling theta waves along the entire septotemporal axis of the hippocampus. Neuron. 2012;75(3):410–7.CrossRef
Metadata
Title
Robust Resting-State Dynamics in a Large-Scale Spiking Neural Network Model of Area CA3 in the Mouse Hippocampus
Authors
Jeffrey D. Kopsick
Carolina Tecuatl
Keivan Moradi
Sarojini M. Attili
Hirak J. Kashyap
Jinwei Xing
Kexin Chen
Jeffrey L. Krichmar
Giorgio A. Ascoli
Publication date
28-01-2022
Publisher
Springer US
Published in
Cognitive Computation / Issue 4/2023
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-021-09954-2

Other articles of this Issue 4/2023

Cognitive Computation 4/2023 Go to the issue

Premium Partner