Skip to main content
Top
Published in: Natural Computing 1/2010

01-03-2010

Robust self-assembly of graphs

Authors: Stanislav Angelov, Sanjeev Khanna, Mirkó Visontai

Published in: Natural Computing | Issue 1/2010

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Self-assembly is a process in which small building blocks interact autonomously to form larger structures. A recently studied model of self-assembly is the Accretive Graph Assembly Model whereby an edge-weighted graph is assembled one vertex at a time starting from a designated seed vertex. The weight of an edge specifies the magnitude of attraction (positive weight) or repulsion (negative weight) between adjacent vertices. It is feasible to add a vertex to the assembly if the total attraction minus repulsion of the already built neighbors exceeds a certain threshold, called the assembly temperature. This model naturally generalizes the extensively studied Tile Assembly Model. A natural question in graph self-assembly is to determine whether or not there exists a sequence of feasible vertex additions to realize the entire graph. However, even when it is feasible to realize the assembly, not much can be inferred about its likelihood of realization in practice due to the uncontrolled nature of the self-assembly process. Motivated by this, we introduce the robust self-assembly problem where the goal is to determine if every possible sequence of feasible vertex additions leads to the completion of the assembly. We show that the robust self-assembly problem is co-NP-complete even on planar graphs with two distinct edge weights. We then examine the tractability of the robust self-assembly problem on a natural subclass of planar graphs, namely grid graphs. We identify structural conditions that determine whether or not a grid graph can be robustly self-assembled, and give poly-time algorithms to determine this for several interesting cases of the problem. Finally, we also show that the problem of counting the number of feasible orderings that lead to the completion of an assembly is #P-complete.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Chelyapov N, Brun Y, Gopalkrishnan M, Reishus D, Shaw B, Adleman LM (2004) DNA triangles and self-assembled hexagonal tilings. J Am Chem Soc 126(43):13924–13925CrossRef Chelyapov N, Brun Y, Gopalkrishnan M, Reishus D, Shaw B, Adleman LM (2004) DNA triangles and self-assembled hexagonal tilings. J Am Chem Soc 126(43):13924–13925CrossRef
go back to reference Chen H-L, Goel A (2004) Error free self-assembly using error prone tiles. In: Proceedings of the 10th international workshop on DNA computing, pp 62–75 Chen H-L, Goel A (2004) Error free self-assembly using error prone tiles. In: Proceedings of the 10th international workshop on DNA computing, pp 62–75
go back to reference He Y, Chen Y, Liu H, Ribbe AE, Mao C (2005) Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J Am Chem Soc 127(35):12202–12203CrossRef He Y, Chen Y, Liu H, Ribbe AE, Mao C (2005) Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J Am Chem Soc 127(35):12202–12203CrossRef
go back to reference LaBean TH, Yan H, Kopatsch J, Liu F, Winfree E, Reif JH, Seeman NC (2000) Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes. J Am Chem Soc 122(9):1848–1860CrossRef LaBean TH, Yan H, Kopatsch J, Liu F, Winfree E, Reif JH, Seeman NC (2000) Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes. J Am Chem Soc 122(9):1848–1860CrossRef
go back to reference Malo J, Mitchell JC, Vénien-Bryan C, Harris JR, Wille H, Sherratt DJ, Turberfield AJ (2005) Engineering a 2D protein-DNA crystal. Angew Chem Int Ed 44(20):3057–3061CrossRef Malo J, Mitchell JC, Vénien-Bryan C, Harris JR, Wille H, Sherratt DJ, Turberfield AJ (2005) Engineering a 2D protein-DNA crystal. Angew Chem Int Ed 44(20):3057–3061CrossRef
go back to reference Middleton AA (1999) Computational complexity of determining the barriers to interface motion in random systems. Phys Rev E 59(3):2571–2577CrossRef Middleton AA (1999) Computational complexity of determining the barriers to interface motion in random systems. Phys Rev E 59(3):2571–2577CrossRef
go back to reference Reif JH, Sahu S, Yin P (2005) Complexity of graph self-assembly in accretive systems and self-destructible systems. In: Proceedings of the 11th international meeting on DNA computing, pp 101–112 Reif JH, Sahu S, Yin P (2005) Complexity of graph self-assembly in accretive systems and self-destructible systems. In: Proceedings of the 11th international meeting on DNA computing, pp 101–112
go back to reference Rothemund PWL (2000) Using lateral capillary forces to compute by self-assembly. Proc Natl Acad Sci USA 97(3):984–989CrossRef Rothemund PWL (2000) Using lateral capillary forces to compute by self-assembly. Proc Natl Acad Sci USA 97(3):984–989CrossRef
go back to reference Rothemund PWK, Winfree E (2000) The program-size complexity of self-assembled squares (extended abstract). In: Proceedings of the 32th annual ACM symposium on theory of computing, pp 459–468 Rothemund PWK, Winfree E (2000) The program-size complexity of self-assembled squares (extended abstract). In: Proceedings of the 32th annual ACM symposium on theory of computing, pp 459–468
go back to reference Rothemund PWK, Papadakis N, Winfree E (2004) Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol 2(12):2041–2053CrossRef Rothemund PWK, Papadakis N, Winfree E (2004) Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol 2(12):2041–2053CrossRef
go back to reference Schnyder W (1990) Embedding planar graphs on the grid. In: Proceedings of the 1st annual ACM-SIAM symposium on discrete algorithms, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics, pp 138–148 Schnyder W (1990) Embedding planar graphs on the grid. In: Proceedings of the 1st annual ACM-SIAM symposium on discrete algorithms, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics, pp 138–148
go back to reference Wang H (1961) Proving theorems by pattern recognition II. Bell Syst Tech J 40:1–41 Wang H (1961) Proving theorems by pattern recognition II. Bell Syst Tech J 40:1–41
go back to reference Winfree E, Bekbolatov R (2003) Proofreading tile sets: error correction for algorithmic self-assembly. In: Proceedings of the 9th international workshop on DNA based computers, pp 126–144 Winfree E, Bekbolatov R (2003) Proofreading tile sets: error correction for algorithmic self-assembly. In: Proceedings of the 9th international workshop on DNA based computers, pp 126–144
go back to reference Winfree E, Liu F, Wenzler LA, Seeman NC (1998) Design and self-assembly of two-dimensional DNA crystals. Nature 394:539–544CrossRef Winfree E, Liu F, Wenzler LA, Seeman NC (1998) Design and self-assembly of two-dimensional DNA crystals. Nature 394:539–544CrossRef
go back to reference Yan H, LaBean TH, Feng L, Reif JH (2003) Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices. Proc Natl Acad Sci USA 100(14):8103–8108CrossRef Yan H, LaBean TH, Feng L, Reif JH (2003) Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices. Proc Natl Acad Sci USA 100(14):8103–8108CrossRef
Metadata
Title
Robust self-assembly of graphs
Authors
Stanislav Angelov
Sanjeev Khanna
Mirkó Visontai
Publication date
01-03-2010
Publisher
Springer Netherlands
Published in
Natural Computing / Issue 1/2010
Print ISSN: 1567-7818
Electronic ISSN: 1572-9796
DOI
https://doi.org/10.1007/s11047-009-9149-5

Other articles of this Issue 1/2010

Natural Computing 1/2010 Go to the issue

Premium Partner