Skip to main content
Top
Published in: International Journal of Computer Vision 2/2013

01-01-2013

Robust Visual Tracking via Structured Multi-Task Sparse Learning

Authors: Tianzhu Zhang, Bernard Ghanem, Si Liu, Narendra Ahuja

Published in: International Journal of Computer Vision | Issue 2/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we formulate object tracking in a particle filter framework as a structured multi-task sparse learning problem, which we denote as Structured Multi-Task Tracking (S-MTT). Since we model particles as linear combinations of dictionary templates that are updated dynamically, learning the representation of each particle is considered a single task in Multi-Task Tracking (MTT). By employing popular sparsity-inducing \(\ell _{p,q}\) mixed norms \((\text{ specifically} p\in \{2,\infty \}\) and \(q=1),\) we regularize the representation problem to enforce joint sparsity and learn the particle representations together. As compared to previous methods that handle particles independently, our results demonstrate that mining the interdependencies between particles improves tracking performance and overall computational complexity. Interestingly, we show that the popular \(L_1\) tracker (Mei and Ling, IEEE Trans Pattern Anal Mach Intel 33(11):2259–2272, 2011) is a special case of our MTT formulation (denoted as the \(L_{11}\) tracker) when \(p=q=1.\) Under the MTT framework, some of the tasks (particle representations) are often more closely related and more likely to share common relevant covariates than other tasks. Therefore, we extend the MTT framework to take into account pairwise structural correlations between particles (e.g. spatial smoothness of representation) and denote the novel framework as S-MTT. The problem of learning the regularized sparse representation in MTT and S-MTT can be solved efficiently using an Accelerated Proximal Gradient (APG) method that yields a sequence of closed form updates. As such, S-MTT and MTT are computationally attractive. We test our proposed approach on challenging sequences involving heavy occlusion, drastic illumination changes, and large pose variations. Experimental results show that S-MTT is much better than MTT, and both methods consistently outperform state-of-the-art trackers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
The score is the ratio of the intersection to the union of two bounding boxes. In our case, it would be the ratio of the intersection of the ground truth and the predicted tracks to their union in each frame.
 
2
Since the degree matrix \(\hat{\mathbf{D }}\) is diagonal and non-negative and since the Laplacian \(\mathbf L \) of any graph is positive semi-definite, the normalized Laplacian \(\hat{\mathbf{L }}\) is positive semi-definite. Thus, \(G(\mathbf C )\) is convex in \(\mathbf C .\)
 
3
The proximal mapping of a non-smooth convex function \(h(.)\) is defined as: \(\mathbf{prox }_h(\mathbf x )=\arg \min _\mathbf{u }\left(h(\mathbf u )+\frac{1}{2}\Vert \mathbf u -\mathbf x \Vert _2^2\right).\)
 
8
This dissimilarity measure is used often to compare tracking performance. Other measures can be used, including the PASCAL overlap score.
 
Literature
go back to reference Adam, A., Rivlin, E.,& Shimshoni, I. (2006). Robust fragments-based tracking using the integral histogram. In IEEE conference on computer vision and pattern recognition (pp. 798–805). Adam, A., Rivlin, E.,& Shimshoni, I. (2006). Robust fragments-based tracking using the integral histogram. In IEEE conference on computer vision and pattern recognition (pp. 798–805).
go back to reference Avidan, S. (2005). Ensemble tracking. In IEEE conference on computer vision and pattern recognition (pp. 494–501). Avidan, S. (2005). Ensemble tracking. In IEEE conference on computer vision and pattern recognition (pp. 494–501).
go back to reference Babenko, B., Yang, M. H.,& Belongie, S. (2009). Visual tracking with online multiple instance learning. In IEEE conference on computer vision and pattern recognition (pp. 983–990). Babenko, B., Yang, M. H.,& Belongie, S. (2009). Visual tracking with online multiple instance learning. In IEEE conference on computer vision and pattern recognition (pp. 983–990).
go back to reference Bao, C., Wu, Y., Ling, H.,& Ji, H. (2012). Real time robust l1 tracker using accelerated proximal gradient approach. In IEEE conference on computer vision and pattern recognition (pp. 1–8). Bao, C., Wu, Y., Ling, H.,& Ji, H. (2012). Real time robust l1 tracker using accelerated proximal gradient approach. In IEEE conference on computer vision and pattern recognition (pp. 1–8).
go back to reference Beck, A.,& Teboulle, M. (2009). A fast iterative shrinkagethresholding algorithm for linear inverse problems. SIAM Journal on Imaging Science, 2(1), 183–202. Beck, A.,& Teboulle, M. (2009). A fast iterative shrinkagethresholding algorithm for linear inverse problems. SIAM Journal on Imaging Science, 2(1), 183–202.
go back to reference Black, M. J.,& Jepson, A. D. (1998). Eigentracking: Robust matching and tracking of articulated objects using a view-based representation. International Journal of Computer Vision, 26(1), 63–84. Black, M. J.,& Jepson, A. D. (1998). Eigentracking: Robust matching and tracking of articulated objects using a view-based representation. International Journal of Computer Vision, 26(1), 63–84.
go back to reference Blasch, E.,& Kahler, B. (2005). Multiresolution EO/IR target tracking and identification. In International conference on information fusion (Vol. 8, pp. 1–8). Blasch, E.,& Kahler, B. (2005). Multiresolution EO/IR target tracking and identification. In International conference on information fusion (Vol. 8, pp. 1–8).
go back to reference Candès, E. J., Romberg, J. K.,& Tao, T. (2006). Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, 59(8), 1207–1223. Candès, E. J., Romberg, J. K.,& Tao, T. (2006). Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, 59(8), 1207–1223.
go back to reference Chen, X., Pan, W., Kwok, J.,& Carbonell, J. (2009). Accelerated gradient method for multi-task sparse learning problem. In IEEE international conference on data mining (pp. 746–751). Chen, X., Pan, W., Kwok, J.,& Carbonell, J. (2009). Accelerated gradient method for multi-task sparse learning problem. In IEEE international conference on data mining (pp. 746–751).
go back to reference Collins, R. T.,& Liu, Y. (2003). On-line selection of discriminative tracking features. In International conference on computer vision (pp. 346–352). Collins, R. T.,& Liu, Y. (2003). On-line selection of discriminative tracking features. In International conference on computer vision (pp. 346–352).
go back to reference Comaniciu, D., Ramesh, V.,& Meer, P. (2003). Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(5), 564–575. Comaniciu, D., Ramesh, V.,& Meer, P. (2003). Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(5), 564–575.
go back to reference Doucet, A., De Freitas, N.,& Gordon, N. (2001). Sequential Monte Carlo methods in practice (1st ed.). Springer. Doucet, A., De Freitas, N.,& Gordon, N. (2001). Sequential Monte Carlo methods in practice (1st ed.). Springer.
go back to reference Grabner, H., Grabner, M.,& Bischof, H. (2006). Real-time tracking via on-line boosting. In British machine vision conference (pp. 1–10). Grabner, H., Grabner, M.,& Bischof, H. (2006). Real-time tracking via on-line boosting. In British machine vision conference (pp. 1–10).
go back to reference Grabner, H., Leistner, C.,& Bischof, H. (2008). Semi-supervised on-line boosting for robust tracking. In European conference on computer vision (pp. 234–247). Grabner, H., Leistner, C.,& Bischof, H. (2008). Semi-supervised on-line boosting for robust tracking. In European conference on computer vision (pp. 234–247).
go back to reference Isard, M.,& Blake, A. (1998). Condensation—Conditional density propagation for visual tracking. International Journal of Computer Vision, 29(1), 5–28. Isard, M.,& Blake, A. (1998). Condensation—Conditional density propagation for visual tracking. International Journal of Computer Vision, 29(1), 5–28.
go back to reference Jepson, A., Fleet, D.,& El-Maraghi, T. (2003). Robust on-line appearance models for visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(10), 1296–1311. Jepson, A., Fleet, D.,& El-Maraghi, T. (2003). Robust on-line appearance models for visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(10), 1296–1311.
go back to reference Jiang, N., Liu, W.,& Wu, Y. (2011). Adaptive and discriminative metric differential tracking. In IEEE conference on computer vision and pattern recognition (pp. 1161–1168). Jiang, N., Liu, W.,& Wu, Y. (2011). Adaptive and discriminative metric differential tracking. In IEEE conference on computer vision and pattern recognition (pp. 1161–1168).
go back to reference Khan, Z., Balch, T.,& Dellaert, F. (2004). A rao-blackwellized particle filter for eigentracking. In IEEE conference on computer vision and pattern recognition (pp. 980–986). Khan, Z., Balch, T.,& Dellaert, F. (2004). A rao-blackwellized particle filter for eigentracking. In IEEE conference on computer vision and pattern recognition (pp. 980–986).
go back to reference Kwon, J.,& Lee, K. M. (2010). Visual tracking decomposition. In IEEE conference on computer vision and pattern recognition (pp. 1269–1276). Kwon, J.,& Lee, K. M. (2010). Visual tracking decomposition. In IEEE conference on computer vision and pattern recognition (pp. 1269–1276).
go back to reference Leistner, C., Godec, M., Saffari, A.,& Bischof, H. (2010). Online multi-view forests for tracking. In DAGM (pp. 493–502). Leistner, C., Godec, M., Saffari, A.,& Bischof, H. (2010). Online multi-view forests for tracking. In DAGM (pp. 493–502).
go back to reference Li, H., Shen, C.,& Shi, Q. (2011). Real-time visual tracking with compressed sensing. In IEEE conference on computer vision and pattern recognition (pp. 1305–1312). Li, H., Shen, C.,& Shi, Q. (2011). Real-time visual tracking with compressed sensing. In IEEE conference on computer vision and pattern recognition (pp. 1305–1312).
go back to reference Liu, B., Huang, J., Yang, L.,& Kulikowski, C. (2011). Robust visual tracking with local sparse appearance model and k-selection. In IEEE conference on computer vision and pattern recognition (pp. 1–8). Liu, B., Huang, J., Yang, L.,& Kulikowski, C. (2011). Robust visual tracking with local sparse appearance model and k-selection. In IEEE conference on computer vision and pattern recognition (pp. 1–8).
go back to reference Liu, B., Yang, L., Huang, J., Meer, P., Gong, L.,& Kulikowski, C. (2010). Robust and fast collaborative tracking with two stage sparse optimization. In European conference on computer vision (pp. 1–14). Liu, B., Yang, L., Huang, J., Meer, P., Gong, L.,& Kulikowski, C. (2010). Robust and fast collaborative tracking with two stage sparse optimization. In European conference on computer vision (pp. 1–14).
go back to reference Liu, R., Cheng, J.,& Lu, H. (2009). A robust boosting tracker with minimum error bound in a co-training framework. In International conference on computer vision (pp. 1459–1466). Liu, R., Cheng, J.,& Lu, H. (2009). A robust boosting tracker with minimum error bound in a co-training framework. In International conference on computer vision (pp. 1459–1466).
go back to reference Mei, X.,& Ling, H. (2011). Robust visual tracking and vehicle classification via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(11), 2259–2272. Mei, X.,& Ling, H. (2011). Robust visual tracking and vehicle classification via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(11), 2259–2272.
go back to reference Mei, X., Ling, H., Wu, Y., Blasch, E.,& Bai, L. (2011). Minimum error bounded efficient l1 tracker with occlusion detection. In IEEE conference on computer vision and pattern recognition (pp. 1257–1264). Mei, X., Ling, H., Wu, Y., Blasch, E.,& Bai, L. (2011). Minimum error bounded efficient l1 tracker with occlusion detection. In IEEE conference on computer vision and pattern recognition (pp. 1257–1264).
go back to reference Nesterov, Y. (2007). Gradient methods for minimizing composite objective function. In CORE discussion paper. Nesterov, Y. (2007). Gradient methods for minimizing composite objective function. In CORE discussion paper.
go back to reference Peng, Y., Ganesh, A., Wright, J., Xu, W.,& Ma, Y. (2012). RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34, 2233–2246. Peng, Y., Ganesh, A., Wright, J., Xu, W.,& Ma, Y. (2012). RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34, 2233–2246.
go back to reference Quattoni, A., Carreras, X., Collins, M.,& Darrell, T. (2009). An efficient projection for l 1, infinity regularization. In International conference on machine learning (pp. 857–864). Quattoni, A., Carreras, X., Collins, M.,& Darrell, T. (2009). An efficient projection for l 1, infinity regularization. In International conference on machine learning (pp. 857–864).
go back to reference Ross, D., Lim, J., Lin, R. S.,& Yang, M. H. (2008). Incremental learning for robust visual tracking. International Journal of Computer Vision, 77(1), 125–141. Ross, D., Lim, J., Lin, R. S.,& Yang, M. H. (2008). Incremental learning for robust visual tracking. International Journal of Computer Vision, 77(1), 125–141.
go back to reference Wu, Y.,& Huang, T. S. (2004). Robust visual tracking by integrating multiple cues based on co-inference learning. International Journal of Computer Vision, 58, 55–71. Wu, Y.,& Huang, T. S. (2004). Robust visual tracking by integrating multiple cues based on co-inference learning. International Journal of Computer Vision, 58, 55–71.
go back to reference Yang, C., Duraiswami, R.,& Davis, L. (2005). Fast multiple object tracking via a hierarchical particle filter. In International conference on computer vision (pp. 212–219). Yang, C., Duraiswami, R.,& Davis, L. (2005). Fast multiple object tracking via a hierarchical particle filter. In International conference on computer vision (pp. 212–219).
go back to reference Yang, M., Wu, Y.,& Hua, G. (2009). Context-aware visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(7), 1195–1209. Yang, M., Wu, Y.,& Hua, G. (2009). Context-aware visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(7), 1195–1209.
go back to reference Yilmaz, A., Javed, O.,& Shah, M. (2006). Object tracking: A survey. ACM Computing Surveys, 38(4), 13. Yilmaz, A., Javed, O.,& Shah, M. (2006). Object tracking: A survey. ACM Computing Surveys, 38(4), 13.
go back to reference Yin, Z.,& Collins, R. (2008). Object tracking and detection after occlusion via numerical hybrid local and global mode-seeking. In IEEE conference on computer vision and pattern recognition (pp. 1–8). Yin, Z.,& Collins, R. (2008). Object tracking and detection after occlusion via numerical hybrid local and global mode-seeking. In IEEE conference on computer vision and pattern recognition (pp. 1–8).
go back to reference Yu, Q., Dinh, T. B.,& Medioni, G. (2008). Online tracking and reacquisition using co-trained generative and discriminative trackers. In European conference on computer vision (pp. 678–691). Yu, Q., Dinh, T. B.,& Medioni, G. (2008). Online tracking and reacquisition using co-trained generative and discriminative trackers. In European conference on computer vision (pp. 678–691).
go back to reference Yuan, X.,& Yan, S. (2010). Visual classification with multi-task joint sparse representation. In IEEE conference on computer vision and pattern recognition (pp. 3493–3500). Yuan, X.,& Yan, S. (2010). Visual classification with multi-task joint sparse representation. In IEEE conference on computer vision and pattern recognition (pp. 3493–3500).
go back to reference Zhang, T., Ghanem, B., Liu, S.,& Ahuja, N. (2012a). Low-rank sparse learning for robust visual tracking. In European conference on computer vision (pp. 1–8). Zhang, T., Ghanem, B., Liu, S.,& Ahuja, N. (2012a). Low-rank sparse learning for robust visual tracking. In European conference on computer vision (pp. 1–8).
go back to reference Zhang, T., Ghanem, B., Liu, S.,& Ahuja, N. (2012b). Robust visual tracking via multi-task sparse learning. In IEEE conference on computer vision and pattern recognition (pp. 1–8). Zhang, T., Ghanem, B., Liu, S.,& Ahuja, N. (2012b). Robust visual tracking via multi-task sparse learning. In IEEE conference on computer vision and pattern recognition (pp. 1–8).
go back to reference Zhou, S. K., Chellappa, R.,& Moghaddam, B. (2004). Visual tracking and recognition using appearance-adaptive models in particle filters. IEEE Transactions on Image Processing, 11(1), 1491–1506. Zhou, S. K., Chellappa, R.,& Moghaddam, B. (2004). Visual tracking and recognition using appearance-adaptive models in particle filters. IEEE Transactions on Image Processing, 11(1), 1491–1506.
go back to reference Zhu, X. (2008). Semi-supervised learning literature survey. Computer sciences technical report 1530, University of Madison. Zhu, X. (2008). Semi-supervised learning literature survey. Computer sciences technical report 1530, University of Madison.
Metadata
Title
Robust Visual Tracking via Structured Multi-Task Sparse Learning
Authors
Tianzhu Zhang
Bernard Ghanem
Si Liu
Narendra Ahuja
Publication date
01-01-2013
Publisher
Springer US
Published in
International Journal of Computer Vision / Issue 2/2013
Print ISSN: 0920-5691
Electronic ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-012-0582-z

Other articles of this Issue 2/2013

International Journal of Computer Vision 2/2013 Go to the issue

OriginalPaper

Superparsing

Premium Partner