Skip to main content
Top
Published in: Rock Mechanics and Rock Engineering 8/2022

12-05-2022 | Original Paper

Rock Strata Failure Behavior of Deep Ordovician Limestone Aquifer and Multi-level Control Technology of Water Inrush Based on Microseismic Monitoring and Numerical Methods

Authors: Jianping Zuo, Genshui Wu, Jian Du, Bo Lei, Yubao Li

Published in: Rock Mechanics and Rock Engineering | Issue 8/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The mining depth of most coal mines in North China has exceeded 1 km. The high seepage water pressure caused by high ground stress leads to the increasingly serious threat of water disaster in the mine. To explore the relationship and mechanism between water inrush from deep mining floor and grouting prevention, single-level grouting and multi-level cooperative grouting methods were carried out in Ordovician limestone confined aquifer of coal seam floor in Xingdong coal mine. Meanwhile, the temporal and spatial characteristics of rock fracture in the floor of deep mining face are revealed through the law of rock fracture microseismic. It is noteworthy that the occurrence time of water inrush and microseismic events have lag characteristics, that is, the occurrence time of microseismic events is earlier than that of water inrush. The multi-level cooperative grouting method can effectively control the non-uniform dissolution Ordovician limestone aquifer in-plane and vertical plane. Furthermore, single-level grouting and multi-level cooperative grouting methods are assumed to be unstable grouting and stable grouting. Besides, the flow pattern transformation characteristics of Ordovician limestone water in unstable to stable grouting are simulated by the finite element method. The results show that the energy inoculation level of fracture expansion around the aquifer decreases after stable grouting reinforcement. In other words, the multi-level cooperative grouting method can effectively strengthen and fill the water inrush channel and reduce the damage of high osmotic pressure to the aquiclude. It is of great significance to reduce the probability of water inrush in deep coal seam and ensure the mining safety of deep coal seam.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bai HB, Ma D, Chen ZQ (2013) Mechanical behavior of groundwater seepage in karst collapse pillars. Eng Geol 164:101–106 Bai HB, Ma D, Chen ZQ (2013) Mechanical behavior of groundwater seepage in karst collapse pillars. Eng Geol 164:101–106
go back to reference Bai JW, Zhu ZJ, Liu RT, Wang M, Zhang QS, Ma H (2021) Groundwater runoff pattern and keyhole grouting method in deep mines. Bull Eng Geol Env 80(7):5743–5755 Bai JW, Zhu ZJ, Liu RT, Wang M, Zhang QS, Ma H (2021) Groundwater runoff pattern and keyhole grouting method in deep mines. Bull Eng Geol Env 80(7):5743–5755
go back to reference Bense VF, Gleeson T, Loveless SE, Bour O, Scibek J (2013) Fault zone hydrogeology. Earth-Sci Rev 127:171–192 Bense VF, Gleeson T, Loveless SE, Bour O, Scibek J (2013) Fault zone hydrogeology. Earth-Sci Rev 127:171–192
go back to reference Biot MA (1962) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33(4):1482–1498 Biot MA (1962) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33(4):1482–1498
go back to reference Brace WF (1978) A note on permeability change in geologic materials due to stress. Pure Appl Geophys 116(4/5):627–633 Brace WF (1978) A note on permeability change in geologic materials due to stress. Pure Appl Geophys 116(4/5):627–633
go back to reference Brinkman HC (1949) A calculation of the viscous force exerted by flowing fluid on a dense swam of particles. Appl Sci Res 1(1):27–34 Brinkman HC (1949) A calculation of the viscous force exerted by flowing fluid on a dense swam of particles. Appl Sci Res 1(1):27–34
go back to reference Brown RJS, Korringa J (1975) On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid. Geophysics 40(4):608–616 Brown RJS, Korringa J (1975) On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid. Geophysics 40(4):608–616
go back to reference Bukowski P (2011) Water hazard assessment in active shafts in upper Silesian coal basin mines. Mine Water Environ 30(4):302–311 Bukowski P (2011) Water hazard assessment in active shafts in upper Silesian coal basin mines. Mine Water Environ 30(4):302–311
go back to reference Cai M, Kaiser PK, Martin CD (2001) Quantification of rock mass damage in underground excavations from microseismic event monitoring. Int J Rock Mech Min Sci 38(8):1135–1145 Cai M, Kaiser PK, Martin CD (2001) Quantification of rock mass damage in underground excavations from microseismic event monitoring. Int J Rock Mech Min Sci 38(8):1135–1145
go back to reference De Waele J, Gutierrez F, Parise M, Plan L (2011) Geomorphology and natural hazards in karst areas: a review. Geomorphology 134(1–2):1–8 De Waele J, Gutierrez F, Parise M, Plan L (2011) Geomorphology and natural hazards in karst areas: a review. Geomorphology 134(1–2):1–8
go back to reference Fasshauer GE (2007) Meshfree approximation methods with matlab. World Scientific 520. Fasshauer GE (2007) Meshfree approximation methods with matlab. World Scientific 520.
go back to reference Gandhe A, Venkateswarlu V, Gupta RN (2005) Extraction of coal under a surface water body—a strata control investigation. Rock Mech Rock Eng 38(5):399–410 Gandhe A, Venkateswarlu V, Gupta RN (2005) Extraction of coal under a surface water body—a strata control investigation. Rock Mech Rock Eng 38(5):399–410
go back to reference Gao R, Yan H, Ju F, Mei XC, Wang XL (2018) Influential factors and control of water inrush in a coal seam as the main aquifer. Int J Min Sci Technol 28(2):187–193 Gao R, Yan H, Ju F, Mei XC, Wang XL (2018) Influential factors and control of water inrush in a coal seam as the main aquifer. Int J Min Sci Technol 28(2):187–193
go back to reference Geiger L (1912) Probability method for determination of earthquake epicenters from arrival time only. Bull St Louis Univ 8(1):56–71 Geiger L (1912) Probability method for determination of earthquake epicenters from arrival time only. Bull St Louis Univ 8(1):56–71
go back to reference Hansen D, Garga VK, Townsend DR (1995) Selection and application of a one-dimensional non-Darcy flow equation for two-dimensional flow through rockfill embankments. Can Geotech J 32(2):223–232 Hansen D, Garga VK, Townsend DR (1995) Selection and application of a one-dimensional non-Darcy flow equation for two-dimensional flow through rockfill embankments. Can Geotech J 32(2):223–232
go back to reference Huang Z, Zeng W, Zhao K (2019) Experimental investigation of the variations in hydraulic properties of a fault zone in western Shandong, China. J Hydrol 574:822–835 Huang Z, Zeng W, Zhao K (2019) Experimental investigation of the variations in hydraulic properties of a fault zone in western Shandong, China. J Hydrol 574:822–835
go back to reference Hudyma M, Potvin YH (2010) An engineering approach to seismic risk management in hard rock mines. Rock Mech Rock Eng 43:891–906 Hudyma M, Potvin YH (2010) An engineering approach to seismic risk management in hard rock mines. Rock Mech Rock Eng 43:891–906
go back to reference Islam MR, Hayashi D, Kamruzzaman AB (2009) Finite element modeling of stress distributions and problems for multi-slice longwall mining in Bangladesh with special reference to the Barapukuria coal mine. Int J Coal Geol 78:91–109 Islam MR, Hayashi D, Kamruzzaman AB (2009) Finite element modeling of stress distributions and problems for multi-slice longwall mining in Bangladesh with special reference to the Barapukuria coal mine. Int J Coal Geol 78:91–109
go back to reference Jiang LS, Zhang PP, Chen LJ, Hao Z, Sainoki A, Mitri HS, Wang WB (2017) Numerical approach for goaf-side entry layout and yield pillar design in fractured ground conditions. Rock Mech Rock Eng 50(11):3049–3071 Jiang LS, Zhang PP, Chen LJ, Hao Z, Sainoki A, Mitri HS, Wang WB (2017) Numerical approach for goaf-side entry layout and yield pillar design in fractured ground conditions. Rock Mech Rock Eng 50(11):3049–3071
go back to reference Jiang LS, Kong P, Zhang PP, Shu JM, Wang QB, Chen LJ, Wu QL (2020) Dynamic analysis of the rock burst potential of a longwall panel intersecting with a fault. Rock Mech Rock Eng 53:1737–1754 Jiang LS, Kong P, Zhang PP, Shu JM, Wang QB, Chen LJ, Wu QL (2020) Dynamic analysis of the rock burst potential of a longwall panel intersecting with a fault. Rock Mech Rock Eng 53:1737–1754
go back to reference Koerner RM, Mccabe WM, Lord AE (1981) Overview of acoustic emission monitoring of rock structures. Rock Mech Rock Eng 14(1):27–35 Koerner RM, Mccabe WM, Lord AE (1981) Overview of acoustic emission monitoring of rock structures. Rock Mech Rock Eng 14(1):27–35
go back to reference Li XL, Dong SN, Liu KD (2021) Prevention and control of water inrushes from subseam karstic Ordovician limestone during coal mining above ultra-thin aquitards. Mine Water Environ 40(2):345–356 Li XL, Dong SN, Liu KD (2021) Prevention and control of water inrushes from subseam karstic Ordovician limestone during coal mining above ultra-thin aquitards. Mine Water Environ 40(2):345–356
go back to reference Liang ZZ, Song WC, Liu WT (2020) Theoretical models for simulating the failure range and stability of inclined floor strata induced by mining and hydraulic pressure. Int J Rock Mech Min Sci 132:104382 Liang ZZ, Song WC, Liu WT (2020) Theoretical models for simulating the failure range and stability of inclined floor strata induced by mining and hydraulic pressure. Int J Rock Mech Min Sci 132:104382
go back to reference Lienert BR, Berg E, Frazer LN (1986) Hypocenter: an earthquake location method using centered, scaled, and adaptively damped least squares. Bull Seismol Soc Americ 76(3):771–783 Lienert BR, Berg E, Frazer LN (1986) Hypocenter: an earthquake location method using centered, scaled, and adaptively damped least squares. Bull Seismol Soc Americ 76(3):771–783
go back to reference Liu SQ, Fei Y, Xu YC, Huang L, Guo WY (2020) Full-floor grouting reinforcement for working faces with large mining heights and high water pressure: a case study in China. Mine Water Environ 39:268–279 Liu SQ, Fei Y, Xu YC, Huang L, Guo WY (2020) Full-floor grouting reinforcement for working faces with large mining heights and high water pressure: a case study in China. Mine Water Environ 39:268–279
go back to reference Liu ZX, Dong SN, Wang H, Wang XD, Nan SH, Liu D (2021) Macroscopic and mesoscopic development characteristics of the top strata of middle Ordovician limestone in the Hanxing mining area. Environ Earth Sci 80:526 Liu ZX, Dong SN, Wang H, Wang XD, Nan SH, Liu D (2021) Macroscopic and mesoscopic development characteristics of the top strata of middle Ordovician limestone in the Hanxing mining area. Environ Earth Sci 80:526
go back to reference Ma K, Sun XY, Tang CA, Wang SJ, Yuan FZ, Yl P, Liu K (2020) An early warning method for water inrush in Dongjiahe coal mine based on microseismic moment tensor. J Central South Univ 27(10):3133–3148 Ma K, Sun XY, Tang CA, Wang SJ, Yuan FZ, Yl P, Liu K (2020) An early warning method for water inrush in Dongjiahe coal mine based on microseismic moment tensor. J Central South Univ 27(10):3133–3148
go back to reference Mao DQ, Liu ZB, Wang WK, Li SC, Gao YQ, Xu ZH, Zhang C (2018) An application of hydraulic tomography to a deep coal mine: combining traditional pumping tests with water inrush incidents. J Hydrol 567:1–11 Mao DQ, Liu ZB, Wang WK, Li SC, Gao YQ, Xu ZH, Zhang C (2018) An application of hydraulic tomography to a deep coal mine: combining traditional pumping tests with water inrush incidents. J Hydrol 567:1–11
go back to reference Mercier JP, Beer WD, Mercier JP, Morris S (2015) Evolution of a block cave from time-lapse passive source body-wave traveltime tomography. Geophysics 80(2) WA85–WA97 Mercier JP, Beer WD, Mercier JP, Morris S (2015) Evolution of a block cave from time-lapse passive source body-wave traveltime tomography. Geophysics 80(2) WA85–WA97
go back to reference Mngadi SB, Durrheim RJ, Manzi MSD, Ogasawara H; YabeY, Yilmaz H, Wechsler N, Van Aswegen G, Roberts D, Ward AK, Naoi M, Moriya H, Nakatani M, Ishida A, SATREPS Team, ICDP DSeis Team (2019) Integration of underground mapping, petrology, and high-resolution microseismicity analysis to characterise weak geotechnical zones in deep South African gold mines. Int J Rock Mech Min Sci 114: 79–91 Mngadi SB, Durrheim RJ, Manzi MSD, Ogasawara H; YabeY, Yilmaz H, Wechsler N, Van Aswegen G, Roberts D, Ward AK, Naoi M, Moriya H, Nakatani M, Ishida A, SATREPS Team, ICDP DSeis Team (2019) Integration of underground mapping, petrology, and high-resolution microseismicity analysis to characterise weak geotechnical zones in deep South African gold mines. Int J Rock Mech Min Sci 114: 79–91
go back to reference Mou L, Dong SN, Zhou WF, Wang W, Li A, Shi ZY (2020) Data analysis and key parameters of typical water hazard control engineering in coal mines of China. Mine Water Environ 39:331–344 Mou L, Dong SN, Zhou WF, Wang W, Li A, Shi ZY (2020) Data analysis and key parameters of typical water hazard control engineering in coal mines of China. Mine Water Environ 39:331–344
go back to reference Oluwole O (2011) Application of PDEtoolbox™ to Elasticity Problems. Springer, London, pp 85–104 Oluwole O (2011) Application of PDEtoolbox™ to Elasticity Problems. Springer, London, pp 85–104
go back to reference Parise M, Closson D, Gutierrez F, Stevanović Z (2015) Anticipating and managing engineering problems in the complex karst environment. Environ Earth Sci 74(12):7823–7835 Parise M, Closson D, Gutierrez F, Stevanović Z (2015) Anticipating and managing engineering problems in the complex karst environment. Environ Earth Sci 74(12):7823–7835
go back to reference Plummer LN, Busby JF, Lee RW, Hanshaw BB (1990) Geochemical modeling of the Madison aquifer in parts of Montana, Wyoming, and South Dakota. Water Resour Res 26(9):1981–2014 Plummer LN, Busby JF, Lee RW, Hanshaw BB (1990) Geochemical modeling of the Madison aquifer in parts of Montana, Wyoming, and South Dakota. Water Resour Res 26(9):1981–2014
go back to reference Prugger AF, Gendzwill DJ (1988) Microearthquake location: a nonlinear approach that makes use of a simplex stepping procedure. Bull Seismol Soc Am 78(2):99–815 Prugger AF, Gendzwill DJ (1988) Microearthquake location: a nonlinear approach that makes use of a simplex stepping procedure. Bull Seismol Soc Am 78(2):99–815
go back to reference Qiu M, Huang FJ, Wang JX, Shi LQ, Liu TH (2020) Characteristics of vertical karst development and grouting reinforcement engineering practice of the Ordovician top in the Feicheng coalfield China. Carbon Evapor 35:78 Qiu M, Huang FJ, Wang JX, Shi LQ, Liu TH (2020) Characteristics of vertical karst development and grouting reinforcement engineering practice of the Ordovician top in the Feicheng coalfield China. Carbon Evapor 35:78
go back to reference Sainoki A, Mitri HS, Chinnasane D, Schwartzkopff AK (2019) Quantitative energy-based evaluation of the intensity of mining-induced seismic activity in a fractured rock mass. Rock Mech Rock Eng 52:4651–4667 Sainoki A, Mitri HS, Chinnasane D, Schwartzkopff AK (2019) Quantitative energy-based evaluation of the intensity of mining-induced seismic activity in a fractured rock mass. Rock Mech Rock Eng 52:4651–4667
go back to reference Sako A, Bamba O, Gordio A (2016) Hydrogeochemical processes controlling groundwater quality around Bomboré gold mineralized zone, central Burkina Faso. J Geochem Explor 170:58–71 Sako A, Bamba O, Gordio A (2016) Hydrogeochemical processes controlling groundwater quality around Bomboré gold mineralized zone, central Burkina Faso. J Geochem Explor 170:58–71
go back to reference Srinivasan C, Arora SK, Benady S (1999) Precursory monitoring of impending rockbursts in Kolar gold mines from microseismic emissions at deeper levels. Int J Rock Mech Min Sci 36(7):941–948 Srinivasan C, Arora SK, Benady S (1999) Precursory monitoring of impending rockbursts in Kolar gold mines from microseismic emissions at deeper levels. Int J Rock Mech Min Sci 36(7):941–948
go back to reference Sun YJ, Zuo JP, Karakus M, Wang JT (2019) Investigation of movement and damage of integral overburden during shallow coal seam mining. Int J Rock Mech Min Sci 117:63–75 Sun YJ, Zuo JP, Karakus M, Wang JT (2019) Investigation of movement and damage of integral overburden during shallow coal seam mining. Int J Rock Mech Min Sci 117:63–75
go back to reference Sun YJ, Zuo JP, Karakus M, Wen JH (2020) A novel method for predicting movement and damage of overburden caused by shallow coal mining. Rock Mech Rock Eng 53:1545–1563 Sun YJ, Zuo JP, Karakus M, Wen JH (2020) A novel method for predicting movement and damage of overburden caused by shallow coal mining. Rock Mech Rock Eng 53:1545–1563
go back to reference Sun YJ, Zuo J, Karakus M, Liu L, Zhou HW, Yu ML (2021) A new theoretical method to predict strata movement and surface subsidence due to inclined coal seam mining. Rock Mech Rock Eng 54:2723–2740 Sun YJ, Zuo J, Karakus M, Liu L, Zhou HW, Yu ML (2021) A new theoretical method to predict strata movement and surface subsidence due to inclined coal seam mining. Rock Mech Rock Eng 54:2723–2740
go back to reference Tseng DJ, Tsai BR, Chang LC (2001) A case study on ground treatment for a rock tunnel with high groundwater ingression in Taiwan. Tunn Undergr Space Technol 16:175–183 Tseng DJ, Tsai BR, Chang LC (2001) A case study on ground treatment for a rock tunnel with high groundwater ingression in Taiwan. Tunn Undergr Space Technol 16:175–183
go back to reference Unlu T, Akcin H, Yilmaz O (2013) An integrated approach for the prediction of subsidence for coal mining basins. Eng Geol 166:186–203 Unlu T, Akcin H, Yilmaz O (2013) An integrated approach for the prediction of subsidence for coal mining basins. Eng Geol 166:186–203
go back to reference White WB (2002) Karst hydrology: recent developments and open questions. Eng Geol 65(2–3):85–105 White WB (2002) Karst hydrology: recent developments and open questions. Eng Geol 65(2–3):85–105
go back to reference Wu GS, Yu WJ, Zuo JP, Du SH (2020) Experimental and theoretical investigation on mechanisms performance of the rock-coal-bolt (RCB) composite system. Int J Min Sci Technol 30(6):759–768 Wu GS, Yu WJ, Zuo JP, Du SH (2020) Experimental and theoretical investigation on mechanisms performance of the rock-coal-bolt (RCB) composite system. Int J Min Sci Technol 30(6):759–768
go back to reference Xiao YX, Feng XT, Hudson JA, Chen BR, Feng GL, Liu JP (2016) ISRM suggested method for in situ microseismic monitoring of the fracturing process in rock masses. Rock Mech Rock Eng 49:343–369 Xiao YX, Feng XT, Hudson JA, Chen BR, Feng GL, Liu JP (2016) ISRM suggested method for in situ microseismic monitoring of the fracturing process in rock masses. Rock Mech Rock Eng 49:343–369
go back to reference Xiong W, Tian GL, Huang LX, Zhou J, Gao HJ (2002) Solid-fluid coupling phenomenon in deformable porous media. J Hydrodyn 6:770–776 Xiong W, Tian GL, Huang LX, Zhou J, Gao HJ (2002) Solid-fluid coupling phenomenon in deformable porous media. J Hydrodyn 6:770–776
go back to reference Xu BH, Ding SL, Bai FQ (2010) Numerical simulation of grouting for stopping up water in water inrush accident of coal mine. J China Coal Soc 10:1665–1669 Xu BH, Ding SL, Bai FQ (2010) Numerical simulation of grouting for stopping up water in water inrush accident of coal mine. J China Coal Soc 10:1665–1669
go back to reference Yin SX, Zhang JC, Liu DM (2015) A study of mine water inrushes by measurements of in situ stress and rock failures. Nat Haz 79:1961–1979 Yin SX, Zhang JC, Liu DM (2015) A study of mine water inrushes by measurements of in situ stress and rock failures. Nat Haz 79:1961–1979
go back to reference Yu WJ, Wu GS, Pan B, Wu QH, Liao Z (2021) Experimental investigation of the mechanical properties of sandstone–coal–bolt specimens with different angles under conventional triaxial compression. Int J Geomech 21(6):4021067 Yu WJ, Wu GS, Pan B, Wu QH, Liao Z (2021) Experimental investigation of the mechanical properties of sandstone–coal–bolt specimens with different angles under conventional triaxial compression. Int J Geomech 21(6):4021067
go back to reference Zhang JC (2005) Investigations of water inrushes from aquifers under coal seams. Int J Rock Mech Min Sci 42(3):350–360 Zhang JC (2005) Investigations of water inrushes from aquifers under coal seams. Int J Rock Mech Min Sci 42(3):350–360
go back to reference Zhang JC, Shen BH (2004) Coal mining under aquifers in China: a case study. Int J Rock Mech Min Sci 41(4):629–639 Zhang JC, Shen BH (2004) Coal mining under aquifers in China: a case study. Int J Rock Mech Min Sci 41(4):629–639
go back to reference Zhang PH, Yang TH, Yu QL, Xu T, Shi WH, Li SC (2016) Study of a seepage channel formation using the combination of microseismic monitoring technique and numerical method in Zhangmatun iron mine. Rock Mech Rock Eng 49:3699–3708 Zhang PH, Yang TH, Yu QL, Xu T, Shi WH, Li SC (2016) Study of a seepage channel formation using the combination of microseismic monitoring technique and numerical method in Zhangmatun iron mine. Rock Mech Rock Eng 49:3699–3708
go back to reference Zhang SH, Wu SC, Zhang G, Guo P, Chu CQ (2020) Three-dimensional evolution of damage in sandstone Brazilian discs by the concurrent use of active and passive ultrasonic techniques. Acta Geotech 15:393–408 Zhang SH, Wu SC, Zhang G, Guo P, Chu CQ (2020) Three-dimensional evolution of damage in sandstone Brazilian discs by the concurrent use of active and passive ultrasonic techniques. Acta Geotech 15:393–408
go back to reference Zhao YL, Luo SL, Wang YX, Wang WJ, Zhang LY, Wan W (2017a) Numerical analysis of karst water inrush and a criterion for establishing the width of water-resistant rock pillars. Mine Water Environ 36:508–519 Zhao YL, Luo SL, Wang YX, Wang WJ, Zhang LY, Wan W (2017a) Numerical analysis of karst water inrush and a criterion for establishing the width of water-resistant rock pillars. Mine Water Environ 36:508–519
go back to reference Zhao YL, Wang YX, Wang WJ, Wan W, Tang JZ (2017b) Modeling of non-linear rheological behavior of hard rock using triaxial rheological experiment. Int J Rock Mech Min Sci 93:66–75 Zhao YL, Wang YX, Wang WJ, Wan W, Tang JZ (2017b) Modeling of non-linear rheological behavior of hard rock using triaxial rheological experiment. Int J Rock Mech Min Sci 93:66–75
go back to reference Zhao Y, Yang TH, Zhang PH, Xu HY, Zhou JR, Yu QL (2019) Method for generating a discrete fracture network from microseismic data and its application in analyzing the permeability of rock masses: a case study. Rock Mech Rock Eng 52:3133–3155 Zhao Y, Yang TH, Zhang PH, Xu HY, Zhou JR, Yu QL (2019) Method for generating a discrete fracture network from microseismic data and its application in analyzing the permeability of rock masses: a case study. Rock Mech Rock Eng 52:3133–3155
go back to reference Zhao YL, Liu Q, Zhang CS, Liao J, Lin H, Wang YX (2021) Coupled seepage-damage effect in fractured rock masses: model development and a case study. Int J Rock Mech Min Sci 144:104822 Zhao YL, Liu Q, Zhang CS, Liao J, Lin H, Wang YX (2021) Coupled seepage-damage effect in fractured rock masses: model development and a case study. Int J Rock Mech Min Sci 144:104822
go back to reference Zhou JR, Wei J, Yang TH, Zhang PH, Liu FY, Chen JK (2021) Seepage channel development in the crown pillar: Insights from induced microseismicity. Int J Rock Mech Min Sci 145(1):104851 Zhou JR, Wei J, Yang TH, Zhang PH, Liu FY, Chen JK (2021) Seepage channel development in the crown pillar: Insights from induced microseismicity. Int J Rock Mech Min Sci 145(1):104851
go back to reference Zuo JP, Li YL, Zhang XY, Zhao ZH, Wang TZ (2018) The effects of thermal treatments on the subcritical crack growth of Pingdingshan sandstone at elevated high temperatures. Rock Mech Rock Eng 51:3439–3454 Zuo JP, Li YL, Zhang XY, Zhao ZH, Wang TZ (2018) The effects of thermal treatments on the subcritical crack growth of Pingdingshan sandstone at elevated high temperatures. Rock Mech Rock Eng 51:3439–3454
go back to reference Zuo JP, Wei X, Shi Y, Liu C, Li M, Wong RHC (2020) Experimental study of the ultrasonic and mechanical properties of a naturally fractured limestone. Int J Rock Mech Min Sci 125:104162 Zuo JP, Wei X, Shi Y, Liu C, Li M, Wong RHC (2020) Experimental study of the ultrasonic and mechanical properties of a naturally fractured limestone. Int J Rock Mech Min Sci 125:104162
Metadata
Title
Rock Strata Failure Behavior of Deep Ordovician Limestone Aquifer and Multi-level Control Technology of Water Inrush Based on Microseismic Monitoring and Numerical Methods
Authors
Jianping Zuo
Genshui Wu
Jian Du
Bo Lei
Yubao Li
Publication date
12-05-2022
Publisher
Springer Vienna
Published in
Rock Mechanics and Rock Engineering / Issue 8/2022
Print ISSN: 0723-2632
Electronic ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-022-02891-y

Other articles of this Issue 8/2022

Rock Mechanics and Rock Engineering 8/2022 Go to the issue