Skip to main content
Top
Published in: International Journal of Mechanics and Materials in Design 4/2023

02-10-2023

Role played by phonon drag on accuracy of MD simulations of nanowires due to deficiently selected strain rates

Authors: S. A. Meguid, S. I. Kundalwal, A. R. Alian

Published in: International Journal of Mechanics and Materials in Design | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The literature contains numerous articles devoted to examining the mechanical behavior of nanowires (NWs) using molecular dynamics simulations. Many of these investigations have selected improper strain rates leading to erroneous results concerning ductile–brittle transition. In this study, we tested this hypothesis and proved that such transition in the material behavior existed due to the improper selection of strain rates which eventually changes the propagation velocity of phonons in the conducted atomistic simulations. In the current study, we subjected gold nanowires (Au NWs) with a diameter of 100 Å and lengths ranging from 25 to 1000 Å to varied strain rates. Specifically, we examined the effect of the rate of deformation of the NW upon its mechanical behaviour by dividing its length into several stations along its entire length to capture the strain distribution in each segment along that length. Five orders of magnitudes of strain rates were applied in our work for studying the influence of rate of deformation on the strain distribution along the NW length. The results of our molecular dynamics simulations show that smaller strain rates were necessary for modeling relatively long (> 150 Å) NWs to ensure the transmission of the applied loads through the entire NW length to suppress phonon drag effect. On the other hand, relatively short (< 25 Å) NWs experience large variations in the axial strain along the NW length; with smaller strains near the ends and higher strains at the middle section. As a result, relatively short NWs exhibit higher elastic moduli than longer ones and the NW length’s effect diminishes at lengths exceeding 150 Å. Location of necking, under the application of higher strain rate, shifts away from the loading end of NW towards its middle portion with the decrease in the NW length due to the phonon drag. The slope of the stress–strain curves was found to significantly depend on the NW length, and thus, using the same strain rate over a large range of NW lengths will lead to erroneous results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abia, L.P., Caturla, M.J., SanFabián, E., Chiappe, G., Louis, E.: On the stress-strain curves in gold and aluminum nanowires. Phys. Status Solidi C 6, 2119–2122 (2009)CrossRef Abia, L.P., Caturla, M.J., SanFabián, E., Chiappe, G., Louis, E.: On the stress-strain curves in gold and aluminum nanowires. Phys. Status Solidi C 6, 2119–2122 (2009)CrossRef
go back to reference Agrawal, R., Peng, B., Espinosa, H.D.: Experimental-computational investigation of ZnO nanowires strength and fracture. Nano Lett. 9, 4177–4183 (2009)CrossRef Agrawal, R., Peng, B., Espinosa, H.D.: Experimental-computational investigation of ZnO nanowires strength and fracture. Nano Lett. 9, 4177–4183 (2009)CrossRef
go back to reference Ahadi, A., Hansson, P., Melin, S.: Tensile behavior of single-crystal nano-sized Cu beams – Geometric scaling effects. Comput. Mater. Sci. 135, 127–133 (2017)CrossRef Ahadi, A., Hansson, P., Melin, S.: Tensile behavior of single-crystal nano-sized Cu beams – Geometric scaling effects. Comput. Mater. Sci. 135, 127–133 (2017)CrossRef
go back to reference Branıcio, P.S., Rino, J.: Large deformation and amorphization of Ni nanowires under uniaxial strain: a molecular dynamics study. Phys. Rev. B 62, 16950 (2000)CrossRef Branıcio, P.S., Rino, J.: Large deformation and amorphization of Ni nanowires under uniaxial strain: a molecular dynamics study. Phys. Rev. B 62, 16950 (2000)CrossRef
go back to reference Cai, J., Ye, Y.Y.: Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys. Phys. Rev. B 54, 8398–8410 (1996)CrossRef Cai, J., Ye, Y.Y.: Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys. Phys. Rev. B 54, 8398–8410 (1996)CrossRef
go back to reference Coura, P.Z., Legoas, S.B., Moreira, A.S., Salo, F., Rodrigues, V., Dantas, S.O., Ugarte, D., Galvão, D.S.: On the structural and stability features of linear atomic suspended chains formed from gold nanowires stretching. Nano Lett. 4, 1187–1191 (2004)CrossRef Coura, P.Z., Legoas, S.B., Moreira, A.S., Salo, F., Rodrigues, V., Dantas, S.O., Ugarte, D., Galvão, D.S.: On the structural and stability features of linear atomic suspended chains formed from gold nanowires stretching. Nano Lett. 4, 1187–1191 (2004)CrossRef
go back to reference Dai, G., Wang, B., Xu, S., Lu, Y., Shen, Y.: Side-to-side cold welding for controllable nanogap formation from “dumbbell” ultrathin gold nanorods. ACS Appl. Mater. Interfaces 8, 13506–13511 (2016)CrossRef Dai, G., Wang, B., Xu, S., Lu, Y., Shen, Y.: Side-to-side cold welding for controllable nanogap formation from “dumbbell” ultrathin gold nanorods. ACS Appl. Mater. Interfaces 8, 13506–13511 (2016)CrossRef
go back to reference Daw, M.S., Baskes, M.I.: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443–6453 (1984)CrossRef Daw, M.S., Baskes, M.I.: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443–6453 (1984)CrossRef
go back to reference Deng, C., Sansoz, F.: Enabling ultrahigh plastic flow and work hardening in twinned gold nanowires. Nano Lett. 9, 1517–1522 (2009)CrossRef Deng, C., Sansoz, F.: Enabling ultrahigh plastic flow and work hardening in twinned gold nanowires. Nano Lett. 9, 1517–1522 (2009)CrossRef
go back to reference Diao, J.K., Gall, K., Dunn, M.L.: Surface-stress-induced phase transformation in metal nanowires. Nat. Mater. 2, 656 (2003)CrossRef Diao, J.K., Gall, K., Dunn, M.L.: Surface-stress-induced phase transformation in metal nanowires. Nat. Mater. 2, 656 (2003)CrossRef
go back to reference Diao, J., Gall, K., Dunn, M.L., Zimmerman, J.A.: Atomistic simulations of the yielding of gold nanowires. Acta Mater. 54, 643–653 (2006)CrossRef Diao, J., Gall, K., Dunn, M.L., Zimmerman, J.A.: Atomistic simulations of the yielding of gold nanowires. Acta Mater. 54, 643–653 (2006)CrossRef
go back to reference Dünweg, B., Paul, W.: Brownian dynamics simulations without gaussian random numbers. Int. J. Mod. Phys. C 02, 817–827 (1991)CrossRef Dünweg, B., Paul, W.: Brownian dynamics simulations without gaussian random numbers. Int. J. Mod. Phys. C 02, 817–827 (1991)CrossRef
go back to reference Foiles, S.M., Baskes, M.I., Daw, M.S.: Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33, 7983–7991 (1986)CrossRef Foiles, S.M., Baskes, M.I., Daw, M.S.: Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33, 7983–7991 (1986)CrossRef
go back to reference Gall, K., Diao, J., Dunn, M.L.: The strength of gold nanowires. Nano Lett. 4, 2431–2436 (2004)MATHCrossRef Gall, K., Diao, J., Dunn, M.L.: The strength of gold nanowires. Nano Lett. 4, 2431–2436 (2004)MATHCrossRef
go back to reference Han, J., Fang, L., Sun, J., Han, Y., Sun, K.: Length-dependent mechanical properties of gold nanowires. J. Appl. Phys. 112, 114314 (2012)CrossRef Han, J., Fang, L., Sun, J., Han, Y., Sun, K.: Length-dependent mechanical properties of gold nanowires. J. Appl. Phys. 112, 114314 (2012)CrossRef
go back to reference Humphrey, W., Dalke, A., Schulten, K.: VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)CrossRef Humphrey, W., Dalke, A., Schulten, K.: VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)CrossRef
go back to reference Ikeda, H., Qi, Y., Cagin, T., Samwer, K., Johnson, W.L., Goddard, W.A., III.: Strain rate induced amorphization in metallic nanowires. Phys. Rev. Lett. 82, 2900 (1999)CrossRef Ikeda, H., Qi, Y., Cagin, T., Samwer, K., Johnson, W.L., Goddard, W.A., III.: Strain rate induced amorphization in metallic nanowires. Phys. Rev. Lett. 82, 2900 (1999)CrossRef
go back to reference Joshi, S.K., Pandey, K., Singh, S.K., Dubey, S.: Molecular dynamics simulations of deformation behaaviour of gold nanowires. J. Nanotechnol. 2019, 1–5 (2019)CrossRef Joshi, S.K., Pandey, K., Singh, S.K., Dubey, S.: Molecular dynamics simulations of deformation behaaviour of gold nanowires. J. Nanotechnol. 2019, 1–5 (2019)CrossRef
go back to reference Koh, S.J.A., Lee, H.P.: Molecular dynamics simulation of size and strain rate dependent mechanical response of FCC metallic nanowires. Nanotechnol. 17, 3451–3467 (2006)CrossRef Koh, S.J.A., Lee, H.P.: Molecular dynamics simulation of size and strain rate dependent mechanical response of FCC metallic nanowires. Nanotechnol. 17, 3451–3467 (2006)CrossRef
go back to reference Koh, S.J.A., Lee, H.P., Lu, C., Cheng, Q.H.: Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain-rate effects. Phys. Rev. B 72, 085414 (2005)CrossRef Koh, S.J.A., Lee, H.P., Lu, C., Cheng, Q.H.: Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain-rate effects. Phys. Rev. B 72, 085414 (2005)CrossRef
go back to reference Liang, W., Zhou, M.: Response of copper nanowires in dynamic tensile deformation. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 218, 10003 (2003) Liang, W., Zhou, M.: Response of copper nanowires in dynamic tensile deformation. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 218, 10003 (2003)
go back to reference Liang, W., Zhou, M.: Response of copper nanowires in dynamic tensile deformation. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 218, 599–606 (2004)CrossRef Liang, W., Zhou, M.: Response of copper nanowires in dynamic tensile deformation. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 218, 599–606 (2004)CrossRef
go back to reference Lu, L., Li, S.X., Lu, K.: An abnormal strain rate effect on tensile behavior in nanocrystalline copper. Scr. Mater. 45, 1163–1169 (2001)CrossRef Lu, L., Li, S.X., Lu, K.: An abnormal strain rate effect on tensile behavior in nanocrystalline copper. Scr. Mater. 45, 1163–1169 (2001)CrossRef
go back to reference Lu, Y., Song, J., Huang, J.Y., Lou, J.: Fracture of sub-20nm ultrathin gold nanowires. Adv. Funct. Mater. 21, 3982–3989 (2011)CrossRef Lu, Y., Song, J., Huang, J.Y., Lou, J.: Fracture of sub-20nm ultrathin gold nanowires. Adv. Funct. Mater. 21, 3982–3989 (2011)CrossRef
go back to reference McEntire, R.S., Shen, Y.-L.: Parametric variations of the interatomic potential in atomistic analysis of nano-scale metal plasticity. Int. J. Mech. Mater. Des. 4, 361–374 (2008)CrossRef McEntire, R.S., Shen, Y.-L.: Parametric variations of the interatomic potential in atomistic analysis of nano-scale metal plasticity. Int. J. Mech. Mater. Des. 4, 361–374 (2008)CrossRef
go back to reference Park, H.S., Zimmerman, J.A.: Modeling inelasticity and failure in gold nanowires. Phys. Rev. B 72, 054106 (2005)CrossRef Park, H.S., Zimmerman, J.A.: Modeling inelasticity and failure in gold nanowires. Phys. Rev. B 72, 054106 (2005)CrossRef
go back to reference Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)MATHCrossRef Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)MATHCrossRef
go back to reference Schneider, T., Stoll, E.: Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys. Rev. B 17, 1302–1322 (1978)CrossRef Schneider, T., Stoll, E.: Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys. Rev. B 17, 1302–1322 (1978)CrossRef
go back to reference Shi, G.J., Wang, J.G., Hou, Z.Y., Wang, Z., Liu, R.S.: Simulation study of the effect of strain rate on the mechanical properties and tensile deformation of gold nanowire. Mod. Phys. Lett. B 31, 1750247 (2017)CrossRef Shi, G.J., Wang, J.G., Hou, Z.Y., Wang, Z., Liu, R.S.: Simulation study of the effect of strain rate on the mechanical properties and tensile deformation of gold nanowire. Mod. Phys. Lett. B 31, 1750247 (2017)CrossRef
go back to reference Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010)CrossRef Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010)CrossRef
go back to reference Stukowski, A.: Structure identification methods for atomistic simulations of crystalline aterials. Model. Simul. Mater. Sci. Eng. 20, 045021 (2012)CrossRef Stukowski, A.: Structure identification methods for atomistic simulations of crystalline aterials. Model. Simul. Mater. Sci. Eng. 20, 045021 (2012)CrossRef
go back to reference Stukowski, A., Bulatov, V.V., Arsenlis, A.: Automated identification and indexing of dislocations in crystal interfaces. Model. Simul. Mater. Sci. Eng. 20, 085007 (2012)CrossRef Stukowski, A., Bulatov, V.V., Arsenlis, A.: Automated identification and indexing of dislocations in crystal interfaces. Model. Simul. Mater. Sci. Eng. 20, 085007 (2012)CrossRef
go back to reference Swope, W.C., Andersen, H.C., Berens, P.H., Wilson, K.R.: A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J. Chem. Phys. 76, 637–649 (1982)CrossRef Swope, W.C., Andersen, H.C., Berens, P.H., Wilson, K.R.: A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J. Chem. Phys. 76, 637–649 (1982)CrossRef
go back to reference Tam Ho, D., Im, Y., Kwon, S.-Y., Earmme, Y.Y., Kim, S.Y.: Mechanical failure mode of metal nanowires: global deformation versus local deformation. Sci. Rep. 5, 1–9 (2015) Tam Ho, D., Im, Y., Kwon, S.-Y., Earmme, Y.Y., Kim, S.Y.: Mechanical failure mode of metal nanowires: global deformation versus local deformation. Sci. Rep. 5, 1–9 (2015)
go back to reference Vlassov, S., Bocharov, D., Polyakov, B., Vahtrus, M., Šutka, A., Oras, S., Zadin, V., Kyritsakis, A.: Critical review on experimental and theoretical studies of elastic properties of wurtzite structured ZnO nanowires. Nanotech. Rev. 2, 20220505 (2023)CrossRef Vlassov, S., Bocharov, D., Polyakov, B., Vahtrus, M., Šutka, A., Oras, S., Zadin, V., Kyritsakis, A.: Critical review on experimental and theoretical studies of elastic properties of wurtzite structured ZnO nanowires. Nanotech. Rev. 2, 20220505 (2023)CrossRef
go back to reference Wang, B.L., Yin, S.Y., Wang, G.H., Buldum, A., Zhao, J.J.: Novel structures and properties of gold nanowires. Phys. Rev. Lett. 86, 2046 (2001)CrossRef Wang, B.L., Yin, S.Y., Wang, G.H., Buldum, A., Zhao, J.J.: Novel structures and properties of gold nanowires. Phys. Rev. Lett. 86, 2046 (2001)CrossRef
go back to reference Wang, C., Hu, Y., Lieber, C.M., Sun, S.: Ultrathin Au nanowires and their transport properties. J. Am. Chem. Soc. 130, 8902–8903 (2008)CrossRef Wang, C., Hu, Y., Lieber, C.M., Sun, S.: Ultrathin Au nanowires and their transport properties. J. Am. Chem. Soc. 130, 8902–8903 (2008)CrossRef
go back to reference Wang, F., Dai, Y., Zhao, J., Li, Q., Zhang, B.: Effect of size on fracture and tensile manipulation of gold nanowires. J. Nanopart. Res. 16, 1–12 (2014)CrossRef Wang, F., Dai, Y., Zhao, J., Li, Q., Zhang, B.: Effect of size on fracture and tensile manipulation of gold nanowires. J. Nanopart. Res. 16, 1–12 (2014)CrossRef
go back to reference Wu, H.A., Soh, A.K., Wang, X.X., Sun, Z.H.: Strength and fracture of single crystal metal nanowire. Key Eng. Mater. 261–263, 33–38 (2004)CrossRef Wu, H.A., Soh, A.K., Wang, X.X., Sun, Z.H.: Strength and fracture of single crystal metal nanowire. Key Eng. Mater. 261–263, 33–38 (2004)CrossRef
go back to reference Wu, B., Heidelberg, A., Boland, J.J.: Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4, 525–529 (2005)CrossRef Wu, B., Heidelberg, A., Boland, J.J.: Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4, 525–529 (2005)CrossRef
go back to reference Wu, Z., Zhang, Y.-W., Jhon, M.H., Gao, H., Srolovitz, D.J.: Nanowire failure: long = brittle and short = ductile. Nano Lett. 12, 910–914 (2012)CrossRef Wu, Z., Zhang, Y.-W., Jhon, M.H., Gao, H., Srolovitz, D.J.: Nanowire failure: long = brittle and short = ductile. Nano Lett. 12, 910–914 (2012)CrossRef
go back to reference Wu, C.-D., Fang, T.-H., Wu, C.-C.: Atomistic simulations of nanowelding of single-crystal and amorphous gold nanowires. J. Appl. Phys. 117, 014307 (2015)CrossRef Wu, C.-D., Fang, T.-H., Wu, C.-C.: Atomistic simulations of nanowelding of single-crystal and amorphous gold nanowires. J. Appl. Phys. 117, 014307 (2015)CrossRef
go back to reference Wu, C.-D., Fang, T.-H., Wu, C.-C.: Size effect on cold-welding of gold nanowires investigated using molecular dynamics simulations. Appl. Phys. A 122, 1–6 (2016)CrossRef Wu, C.-D., Fang, T.-H., Wu, C.-C.: Size effect on cold-welding of gold nanowires investigated using molecular dynamics simulations. Appl. Phys. A 122, 1–6 (2016)CrossRef
go back to reference Zhou, X.W., Johnson, R.A., Wadley, H.N.G.: Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys. Rev. B 69(14), 144113 (2004)CrossRef Zhou, X.W., Johnson, R.A., Wadley, H.N.G.: Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys. Rev. B 69(14), 144113 (2004)CrossRef
go back to reference Zhou, H., Li, J., Xian, Y., Wu, R., Hu, G., Xia, R.: Molecular dynamics study on cold-welding of 3D nanoporous composite structures. Phys. Chem. Chem. Phys. 20, 12288–12294 (2018)CrossRef Zhou, H., Li, J., Xian, Y., Wu, R., Hu, G., Xia, R.: Molecular dynamics study on cold-welding of 3D nanoporous composite structures. Phys. Chem. Chem. Phys. 20, 12288–12294 (2018)CrossRef
Metadata
Title
Role played by phonon drag on accuracy of MD simulations of nanowires due to deficiently selected strain rates
Authors
S. A. Meguid
S. I. Kundalwal
A. R. Alian
Publication date
02-10-2023
Publisher
Springer Netherlands
Published in
International Journal of Mechanics and Materials in Design / Issue 4/2023
Print ISSN: 1569-1713
Electronic ISSN: 1573-8841
DOI
https://doi.org/10.1007/s10999-023-09684-3

Other articles of this Issue 4/2023

International Journal of Mechanics and Materials in Design 4/2023 Go to the issue

Premium Partners