Skip to main content
Top
Published in: Rare Metals 5/2022

05-02-2022 | Original Article

Room-temperature extraction of individual elements from charged spent LiFePO4 batteries

Authors: Mei-Cen Fan, Yun Zhao, Yu-Qiong Kang, John Wozny, Zheng Liang, Jun-Xiong Wang, Guang-Min Zhou, Bao-Hua Li, Naser Tavajohi, Fei-Yu Kang

Published in: Rare Metals | Issue 5/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recycling millions of metric tons of spent LiFePO4 batteries would benefit human health while reducing resource depletion and environmental pollution. However, recovering individual elements from the spent batteries without generating waste is challenging. Here, we present a distinctive approach for recycling spent LiFePO4 batteries at room temperature, where water is the only leaching agent consumed. FePO4 and lithium intercalated graphite act as a precursor material for selectively extracting lithium, iron, and phosphorus through charging the LiFePO4 batteries to the delithiated state. NaOH solution extracted Fe from FePO4 within 30 min and regenerated without consumption, similar to a catalyst. Under the optimal leaching conditions (1 mol·L−1 NaOH, 0.5 h, NaOH/Fe molar ratio of 4.5), Fe and P leaching efficiencies achieved 89.1% and 99.2%, respectively. The methodology reflected in this research reduced the material cost per kg cathode material to a fraction of previously published reports, only occupies 6.13% of previous reports. In addition, the method improved the battery recycling revenue calculated by the EverBatt model by 2.31 times and 1.94 times over pyrometallurgical and hydrometallurgical methods. The proposed method allows for the convenient recovery of the elemental components of spent LiFePO4 batteries.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
[1]
go back to reference Turcheniuk K, Bondarev D, Singhal V, Yushin G. Ten years left to redesign lithium-ion batteries. Nature. 2018;559(7715):467.CrossRef Turcheniuk K, Bondarev D, Singhal V, Yushin G. Ten years left to redesign lithium-ion batteries. Nature. 2018;559(7715):467.CrossRef
[2]
go back to reference Fan E, Li L, Wang Z, Lin J, Huang Y, Yao Y, Chen R, Wu F. Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects. Chem Rev. 2020;120(14):7020.CrossRef Fan E, Li L, Wang Z, Lin J, Huang Y, Yao Y, Chen R, Wu F. Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects. Chem Rev. 2020;120(14):7020.CrossRef
[3]
go back to reference Yang Y, Okonkwo EG, Huang G, Xu S, Sun W, He Y. On the sustainability of lithium ion battery industry: a review and perspective. Energy Storage Mater. 2021;36:186.CrossRef Yang Y, Okonkwo EG, Huang G, Xu S, Sun W, He Y. On the sustainability of lithium ion battery industry: a review and perspective. Energy Storage Mater. 2021;36:186.CrossRef
[4]
go back to reference Xu P, Dai Q, Gao H, Liu H, Zhang M, Li M, Chen Y, An K, Meng YS, Liu P, Li Y, Spangenberger JS, Gaines L, Lu J, Chen Z. Efficient direct recycling of lithium-ion battery cathodes by targeted healing. Joule. 2020;4(12):2609.CrossRef Xu P, Dai Q, Gao H, Liu H, Zhang M, Li M, Chen Y, An K, Meng YS, Liu P, Li Y, Spangenberger JS, Gaines L, Lu J, Chen Z. Efficient direct recycling of lithium-ion battery cathodes by targeted healing. Joule. 2020;4(12):2609.CrossRef
[5]
go back to reference Natarajan S, Aravindan V. An urgent call to spent LIB recycling: whys and wherefores for graphite recovery. Adv Energy Mater. 2020;10(37):2002238.CrossRef Natarajan S, Aravindan V. An urgent call to spent LIB recycling: whys and wherefores for graphite recovery. Adv Energy Mater. 2020;10(37):2002238.CrossRef
[6]
go back to reference Harper G, Sommerville R, Kendrick E, Driscoll L, Slater P, Stolkin R, Walton A, Christensen P, Heidrich O, Lambert S, Abbott A, Ryder KS, Gaines L, Anderson P. Recycling lithium-ion batteries from electric vehicles. Nature. 2019;575(7781):75.CrossRef Harper G, Sommerville R, Kendrick E, Driscoll L, Slater P, Stolkin R, Walton A, Christensen P, Heidrich O, Lambert S, Abbott A, Ryder KS, Gaines L, Anderson P. Recycling lithium-ion batteries from electric vehicles. Nature. 2019;575(7781):75.CrossRef
[7]
go back to reference Piatek J, Afyon S, Budnyak TM, Budnyk S, Sipponen MH, Slabon A. Sustainable Li-ion batteries: chemistry and recycling. Adv Energy Mater. 2020;10:2003456. Piatek J, Afyon S, Budnyak TM, Budnyk S, Sipponen MH, Slabon A. Sustainable Li-ion batteries: chemistry and recycling. Adv Energy Mater. 2020;10:2003456.
[8]
go back to reference Zhang X, Li L, Fan E, Xue Q, Bian Y, Wu F, Chen R. Toward sustainable and systematic recycling of spent rechargeable batteries. Chem Soc Rev. 2018;47(19):7239.CrossRef Zhang X, Li L, Fan E, Xue Q, Bian Y, Wu F, Chen R. Toward sustainable and systematic recycling of spent rechargeable batteries. Chem Soc Rev. 2018;47(19):7239.CrossRef
[9]
go back to reference Liu K, Tan Q, Liu L, Li J. Acid-free and selective extraction of lithium from spent lithium iron phosphate batteries via a mechanochemically induced isomorphic substitution. Environ Sci Technol. 2019;53(16):9781.CrossRef Liu K, Tan Q, Liu L, Li J. Acid-free and selective extraction of lithium from spent lithium iron phosphate batteries via a mechanochemically induced isomorphic substitution. Environ Sci Technol. 2019;53(16):9781.CrossRef
[10]
go back to reference Zhang J, Hu J, Liu Y, Jing Q, Yang C, Chen Y, Wang C. Sustainable and facile method for the selective recovery of lithium from cathode scrap of spent LiFePO4 batteries. ACS Sustain Chem Eng. 2019;7(6):5626.CrossRef Zhang J, Hu J, Liu Y, Jing Q, Yang C, Chen Y, Wang C. Sustainable and facile method for the selective recovery of lithium from cathode scrap of spent LiFePO4 batteries. ACS Sustain Chem Eng. 2019;7(6):5626.CrossRef
[11]
go back to reference Xiao WL, Zheng YJ, He HB. Cascade extraction of lithium in anode of waste lithium ion battery. Chin J Rare Metals. 2020;44(10):1078. Xiao WL, Zheng YJ, He HB. Cascade extraction of lithium in anode of waste lithium ion battery. Chin J Rare Metals. 2020;44(10):1078.
[12]
go back to reference Yu J, Wang X, Zhou M, Wang Q. A redox targeting-based material recycling strategy for spent lithium ion batteries. Energy Environ Sci. 2019;12(9):2672.CrossRef Yu J, Wang X, Zhou M, Wang Q. A redox targeting-based material recycling strategy for spent lithium ion batteries. Energy Environ Sci. 2019;12(9):2672.CrossRef
[13]
go back to reference Song W, Liu J, You L, Wang S, Zhou Q, Gao Y, Yin R, Xu W, Guo Z. Re-synthesis of nano-structured LiFePO4/graphene composite derived from spent lithium-ion battery for booming electric vehicle application. J Power Sour. 2019;419:192.CrossRef Song W, Liu J, You L, Wang S, Zhou Q, Gao Y, Yin R, Xu W, Guo Z. Re-synthesis of nano-structured LiFePO4/graphene composite derived from spent lithium-ion battery for booming electric vehicle application. J Power Sour. 2019;419:192.CrossRef
[14]
go back to reference Delmas C, Maccario M, Croguennec L, Le Cras F, Weill F. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nat Mater. 2008;7(8):665.CrossRef Delmas C, Maccario M, Croguennec L, Le Cras F, Weill F. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nat Mater. 2008;7(8):665.CrossRef
[15]
go back to reference Gong C, Xue Z, Wen S, Ye Y, Xie X. Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries. J Power Sour. 2016;318:93.CrossRef Gong C, Xue Z, Wen S, Ye Y, Xie X. Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries. J Power Sour. 2016;318:93.CrossRef
[16]
go back to reference Shin EJ, Kim S, Noh JK, Byun D, Chung KY, Kim HS, Cho BW. A green recycling process designed for LiFePO4 cathode materials for Li-ion batteries. J Mater Chem A. 2015;3(21):11493.CrossRef Shin EJ, Kim S, Noh JK, Byun D, Chung KY, Kim HS, Cho BW. A green recycling process designed for LiFePO4 cathode materials for Li-ion batteries. J Mater Chem A. 2015;3(21):11493.CrossRef
[17]
go back to reference Zheng R, Zhao L, Wang W, Liu Y, Ma Q, Mu D, Li R, Dai C. Optimized Li and Fe recovery from spent lithium-ion batteries via a solution-precipitation method. RSC Adv. 2016;6(49):43613.CrossRef Zheng R, Zhao L, Wang W, Liu Y, Ma Q, Mu D, Li R, Dai C. Optimized Li and Fe recovery from spent lithium-ion batteries via a solution-precipitation method. RSC Adv. 2016;6(49):43613.CrossRef
[18]
go back to reference Yang Y, Zheng X, Cao H, Zhao C, Lin X, Ning P, Zhang Y, Jin W, Sun Z. A closed-loop process for selective metal recovery from spent lithium iron phosphate batteries through mechanochemical activation. ACS Sustain Chem Eng. 2017;5(11):9972.CrossRef Yang Y, Zheng X, Cao H, Zhao C, Lin X, Ning P, Zhang Y, Jin W, Sun Z. A closed-loop process for selective metal recovery from spent lithium iron phosphate batteries through mechanochemical activation. ACS Sustain Chem Eng. 2017;5(11):9972.CrossRef
[19]
go back to reference Fan E, Li L, Zhang X, Bian Y, Xue Q, Wu J, Wu F, Chen R. Selective recovery of Li and Fe from spent lithium-ion batteries by an environmentally friendly mechanochemical approach. ACS Sustain Chem Eng. 2018;6(8):11029.CrossRef Fan E, Li L, Zhang X, Bian Y, Xue Q, Wu J, Wu F, Chen R. Selective recovery of Li and Fe from spent lithium-ion batteries by an environmentally friendly mechanochemical approach. ACS Sustain Chem Eng. 2018;6(8):11029.CrossRef
[20]
go back to reference Yadav P, Jie CJ, Tan S, Srinivasan M. Recycling of cathode from spent lithium iron phosphate batteries. J Hazard Mater. 2020;399:123068.CrossRef Yadav P, Jie CJ, Tan S, Srinivasan M. Recycling of cathode from spent lithium iron phosphate batteries. J Hazard Mater. 2020;399:123068.CrossRef
[21]
go back to reference Kumar J, Shen X, Li B, Liu H, Zhao J. Selective recovery of Li and FePO4 from spent LiFePO4 cathode scraps by organic acids and the properties of the regenerated LiFePO4. Waste Manag. 2020;113:32.CrossRef Kumar J, Shen X, Li B, Liu H, Zhao J. Selective recovery of Li and FePO4 from spent LiFePO4 cathode scraps by organic acids and the properties of the regenerated LiFePO4. Waste Manag. 2020;113:32.CrossRef
[22]
go back to reference Li L, Bian Y, Zhang X, Yao Y, Xue Q, Fan E, Wu F, Chen R. A green and effective room-temperature recycling process of LiFePO4 cathode materials for lithium-ion batteries. Waste Manag. 2019;85:437.CrossRef Li L, Bian Y, Zhang X, Yao Y, Xue Q, Fan E, Wu F, Chen R. A green and effective room-temperature recycling process of LiFePO4 cathode materials for lithium-ion batteries. Waste Manag. 2019;85:437.CrossRef
[23]
go back to reference Yang Y, Meng X, Cao H, Lin X, Liu C, Sun Y, Zhang Y, Sun Z. Selective recovery of lithium from spent lithium iron phosphate batteries: a sustainable process. Green Chem. 2018;20(13):3121.CrossRef Yang Y, Meng X, Cao H, Lin X, Liu C, Sun Y, Zhang Y, Sun Z. Selective recovery of lithium from spent lithium iron phosphate batteries: a sustainable process. Green Chem. 2018;20(13):3121.CrossRef
[24]
go back to reference Li H, Xing S, Liu Y, Li F, Guo H, Kuang G. Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system. ACS Sustain Chem Eng. 2017;5(9):8017.CrossRef Li H, Xing S, Liu Y, Li F, Guo H, Kuang G. Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system. ACS Sustain Chem Eng. 2017;5(9):8017.CrossRef
[25]
go back to reference Tao S, Li J, Wang L, Hu L, Zhou H. A method for recovering Li3PO4 from spent lithium iron phosphate cathode material through high-temperature activation. Ionics. 2019;25(12):5643.CrossRef Tao S, Li J, Wang L, Hu L, Zhou H. A method for recovering Li3PO4 from spent lithium iron phosphate cathode material through high-temperature activation. Ionics. 2019;25(12):5643.CrossRef
[26]
go back to reference Liu K, Liu L, Tan Q, Li J. Selective extraction of lithium from a spent lithium iron phosphate battery by mechanochemical solid-phase oxidation. Green Chem. 2021;23(3):1344.CrossRef Liu K, Liu L, Tan Q, Li J. Selective extraction of lithium from a spent lithium iron phosphate battery by mechanochemical solid-phase oxidation. Green Chem. 2021;23(3):1344.CrossRef
[27]
go back to reference He LP, Sun SY, Song XF, Yu JG. Recovery of cathode materials and Al from spent lithium-ion batteries by cleaning. Waste Manag. 2015;46:523.CrossRef He LP, Sun SY, Song XF, Yu JG. Recovery of cathode materials and Al from spent lithium-ion batteries by cleaning. Waste Manag. 2015;46:523.CrossRef
[28]
go back to reference Zhao Y, Liang Z, Kang Y, Zhou Y, Li Y, He X, Wang L, Mai W, Wang X, Zhou G, Wang J, Li J, Tavajohi N, Li B. Rational design of functional binder systems for high-energy lithium-based rechargeable batteries. Energy Storage Mater. 2021;35:35. Zhao Y, Liang Z, Kang Y, Zhou Y, Li Y, He X, Wang L, Mai W, Wang X, Zhou G, Wang J, Li J, Tavajohi N, Li B. Rational design of functional binder systems for high-energy lithium-based rechargeable batteries. Energy Storage Mater. 2021;35:35.
[29]
go back to reference Zhao Y, Fang LZ, Kang YQ, Wang L, Zhou YN, Liu XY, Li T, Li YX, Liang Z, Zhang ZX, Li BH. A novel three-step approach to separate cathode components for lithium-ion battery recycling. Rare Met. 2021;40(6):1431.CrossRef Zhao Y, Fang LZ, Kang YQ, Wang L, Zhou YN, Liu XY, Li T, Li YX, Liang Z, Zhang ZX, Li BH. A novel three-step approach to separate cathode components for lithium-ion battery recycling. Rare Met. 2021;40(6):1431.CrossRef
[30]
go back to reference Bai Y, Muralidharan N, Li J, Essehli R, Belharouak I. Sustainable direct recycling of lithium-ion batteries via solvent recovery of electrode materials. Chemsuschem. 2020;13(21):5664.CrossRef Bai Y, Muralidharan N, Li J, Essehli R, Belharouak I. Sustainable direct recycling of lithium-ion batteries via solvent recovery of electrode materials. Chemsuschem. 2020;13(21):5664.CrossRef
[31]
go back to reference Bai Y, Hawley WB, Jafta CJ, Muralidharan N, Polzin BJ, Belharouak I. Sustainable recycling of cathode scraps via cyrene-based separation. Sustain Mater Technol. 2020;25:e00202. Bai Y, Hawley WB, Jafta CJ, Muralidharan N, Polzin BJ, Belharouak I. Sustainable recycling of cathode scraps via cyrene-based separation. Sustain Mater Technol. 2020;25:e00202.
[32]
go back to reference Jing Q, Zhang J, Liu Y, Yang C, Ma B, Chen Y, Wang C. E-pH diagrams for the Li–Fe–P–H2O system from 298 to 473 K: thermodynamic analysis and application to the wet chemical processes of the LiFePO4 cathode material. J Phy Chem C. 2019;123(23):14207.CrossRef Jing Q, Zhang J, Liu Y, Yang C, Ma B, Chen Y, Wang C. E-pH diagrams for the Li–Fe–P–H2O system from 298 to 473 K: thermodynamic analysis and application to the wet chemical processes of the LiFePO4 cathode material. J Phy Chem C. 2019;123(23):14207.CrossRef
[33]
go back to reference Cai G, Fung KY, Ng KM, Wibowo C. Process development for the recycle of spent lithium ion batteries by chemical precipitation. Ind Eng Chem Res. 2014;53(47):18245.CrossRef Cai G, Fung KY, Ng KM, Wibowo C. Process development for the recycle of spent lithium ion batteries by chemical precipitation. Ind Eng Chem Res. 2014;53(47):18245.CrossRef
[34]
go back to reference Bai Y, Muralidharan N, Sun YK, Passerini S, Whittingham MS, Belharouak I. Energy and environmental aspects in recycling lithium-ion batteries: concept of battery identity global passport. Mater Today. 2020;41:304.CrossRef Bai Y, Muralidharan N, Sun YK, Passerini S, Whittingham MS, Belharouak I. Energy and environmental aspects in recycling lithium-ion batteries: concept of battery identity global passport. Mater Today. 2020;41:304.CrossRef
Metadata
Title
Room-temperature extraction of individual elements from charged spent LiFePO4 batteries
Authors
Mei-Cen Fan
Yun Zhao
Yu-Qiong Kang
John Wozny
Zheng Liang
Jun-Xiong Wang
Guang-Min Zhou
Bao-Hua Li
Naser Tavajohi
Fei-Yu Kang
Publication date
05-02-2022
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 5/2022
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01919-6

Other articles of this Issue 5/2022

Rare Metals 5/2022 Go to the issue

Premium Partners