Skip to main content
Top
Published in: Journal of Sol-Gel Science and Technology 2/2011

01-02-2011 | Original Paper

Room temperature synthesis of Ti-SBA-15 from silatrane and titanium-glycolate and its catalytic performance towards styrene epoxidation

Authors: Busaraporn Samran, Supattra Aungkutranont, Timothy J. White, Sujitra Wongkasemjit

Published in: Journal of Sol-Gel Science and Technology | Issue 2/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A novel room temperature sol–gel synthesis of Ti-SBA-15 is described using moisture stable silatrane and titanium glycolate precursors, and poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer (EO20PO70EO20) as the structure directing agent. Catalyst performance was optimized by systematically investigating the influence of acidity, reaction time and temperature, and titanium loading. Small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) showed well-ordered 2D mesoporous hexagonal structures, while N2 adsorption/desorption measurements yielded high surface areas (up to 670 m2/g), with large pore diameters (5.79 nm) and volumes (0.83 cm3/g). Diffuse reflectance UV–visible spectroscopy (DRUV) was found that tetravalent titanium as Ti4+O4 tetrahedra were incorporated in the framework through displacement of Si4+O4 after calcination (550°C/6 h) to loadings of 7 mol% Ti without perturbation of the ordered mesoporous structure, or decoration by extra-framework anatase containing Ti4+O6 octahedra. The catalytic activity and selectivity of styrene epoxidation using hydrogen peroxide (H2O2) showed that the conversion of styrene increases significantly at higher titanium contents. The only products of this reaction were styrene oxide and benzaldehyde, with selectivity of 34.2 and 65.8%, respectively, at a styrene conversion of 25.8% over the 7 mol% Ti-SBA-15 catalyst. Beyond this titanium loading, anatase is deposited on the framework and catalytic activity degrades. The performance of the new catalyst is also shown to be superior to conventional materials produced by incipient wetness impregnation where Ti resides on the surface of SBA-15, giving a styrene conversion of 11.9% under identical reaction conditions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhao D, Feng J, Huo Q, Melosh N, Frerickson GH, Chmelka BF, Stucky GD (1998) Science 279:548–552CrossRef Zhao D, Feng J, Huo Q, Melosh N, Frerickson GH, Chmelka BF, Stucky GD (1998) Science 279:548–552CrossRef
2.
go back to reference Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120:6024–6036CrossRef Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120:6024–6036CrossRef
5.
go back to reference Soler-lllia GJ De AA, Sanchez C, Lebeau B, Patarin J (2002) Chem Rev 102:4093 Soler-lllia GJ De AA, Sanchez C, Lebeau B, Patarin J (2002) Chem Rev 102:4093
8.
9.
10.
12.
go back to reference Vinu A, Srinivasu P, Miyahara M, Ariga K (2006) J Phys Chem B 110:801–806CrossRef Vinu A, Srinivasu P, Miyahara M, Ariga K (2006) J Phys Chem B 110:801–806CrossRef
13.
14.
15.
go back to reference Wu S, Han Y, Zou YC, Song JW, Zhao L, Di Y, Liu SZ, Xiao FS (2004) Chem Mater 16:486CrossRef Wu S, Han Y, Zou YC, Song JW, Zhao L, Di Y, Liu SZ, Xiao FS (2004) Chem Mater 16:486CrossRef
16.
17.
19.
21.
22.
go back to reference Yue YH, Gedeon A, Bonardet JL, Melosh N, D’Espinose JB, Fraissard J (1999) Chem Commun 19:1967 Yue YH, Gedeon A, Bonardet JL, Melosh N, D’Espinose JB, Fraissard J (1999) Chem Commun 19:1967
24.
go back to reference Phonthammachai N, Chairassameewong T, Gulari E, Jamieson AM, Wongkasemjit S (2002) Met Mater Min 12:23–28 Phonthammachai N, Chairassameewong T, Gulari E, Jamieson AM, Wongkasemjit S (2002) Met Mater Min 12:23–28
25.
go back to reference Phiriyawirut P, Magaraphan R, Jamieson AM, Wongkasemjit S (2003) Mater Sci Eng A 361:147–154CrossRef Phiriyawirut P, Magaraphan R, Jamieson AM, Wongkasemjit S (2003) Mater Sci Eng A 361:147–154CrossRef
26.
go back to reference Charoenpinijkarn W, Suwankruhasn M, Kesapabutr B, Wongkasemjit S, Jamieson AM (2001) Eur Polymer J 37:1441–1448CrossRef Charoenpinijkarn W, Suwankruhasn M, Kesapabutr B, Wongkasemjit S, Jamieson AM (2001) Eur Polymer J 37:1441–1448CrossRef
27.
go back to reference Phonthammachai N, Chairassameewong T, Gulari E, Jemieson AM, Wongksemjit S (2003) Micropor Mesopor Mater 66:261–271CrossRef Phonthammachai N, Chairassameewong T, Gulari E, Jemieson AM, Wongksemjit S (2003) Micropor Mesopor Mater 66:261–271CrossRef
28.
go back to reference Tanglumlert W, Imae T, White TJ, Wongkasemjit S (2008) Mater Lett 62:4545–4548CrossRef Tanglumlert W, Imae T, White TJ, Wongkasemjit S (2008) Mater Lett 62:4545–4548CrossRef
29.
go back to reference Sathupanya M, Gulari E, Wongkasemjit S (2003) J Eur Ceram Soc 23:2305–2314 Sathupanya M, Gulari E, Wongkasemjit S (2003) J Eur Ceram Soc 23:2305–2314
30.
go back to reference Phiriyawirut P, Jamieson AM, Wongkasemjit S (2005) Micropor Mesopor Mater 77:203–213CrossRef Phiriyawirut P, Jamieson AM, Wongkasemjit S (2005) Micropor Mesopor Mater 77:203–213CrossRef
31.
go back to reference Thanabodeekij N, Sadthayanon S, Gulari E, Wongkasemjit S (2006) Mater Chem Phys 98:131–137CrossRef Thanabodeekij N, Sadthayanon S, Gulari E, Wongkasemjit S (2006) Mater Chem Phys 98:131–137CrossRef
33.
go back to reference Tanglumlert W, Imae T, White TJ, Wongkasemjit S (2009) Cat Comm 10:1070–1073CrossRef Tanglumlert W, Imae T, White TJ, Wongkasemjit S (2009) Cat Comm 10:1070–1073CrossRef
34.
35.
36.
go back to reference Ji D, Zhao R, Lv G, Qian G, Yan L, Suo J (2005) Appl Catal A Gen 281:39–45CrossRef Ji D, Zhao R, Lv G, Qian G, Yan L, Suo J (2005) Appl Catal A Gen 281:39–45CrossRef
37.
Metadata
Title
Room temperature synthesis of Ti-SBA-15 from silatrane and titanium-glycolate and its catalytic performance towards styrene epoxidation
Authors
Busaraporn Samran
Supattra Aungkutranont
Timothy J. White
Sujitra Wongkasemjit
Publication date
01-02-2011
Publisher
Springer US
Published in
Journal of Sol-Gel Science and Technology / Issue 2/2011
Print ISSN: 0928-0707
Electronic ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-010-2345-z

Other articles of this Issue 2/2011

Journal of Sol-Gel Science and Technology 2/2011 Go to the issue

Premium Partners