Skip to main content
Top

2022 | OriginalPaper | Chapter

Rotating Detonation Combustor Downstream Transition Passage Design Considerations

Authors : James Braun, Guillermo Paniagua, Donald Ferguson

Published in: Active Flow and Combustion Control 2021

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A key enabler to integrate turbines downstream of rotating detonation combustors is the design of an optimal combustor-turbine passage. Precise estimates of fluctuations, losses, and heat loads are required for the turbine design as rotating detonation combustors feature transonic flow with rotating shocks moving at few kilohertz. This paper analyzes fluctuations and heat loads of the Purdue Turbine Integrated high-Pressure RDE through reactive unsteady Reynolds Averaged Navier-Stokes (URANS) simulations. CFD++, a commercial CFD software package from Metacomp, is employed to solve the unsteady RANS equations through a one-step reaction mechanism. The inlet of the combustor is fed with a hydrogen-air mixture at mass flows of ~1 kg/s with two different back pressures to obtain supersonic and subsonic outlet flows. The mesh featured around 36 million grid points to ensure the resolving of the boundary layer. Finally, a methodology to lower computational time tenfold for the supersonic and subsonic passage is presented based on non-reacting unsteady RANS simulations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Roy, A., Bedick, C.R., Ferguson, D.H., Sidwell, T., Strakey, P.A.: Investigating instabilities in a rotating detonation combustor operating with natural gas–hydrogen fuel blend—effect of air preheat and annulus width. J. Eng. Gas Turbines Power 141(11) (2019) Roy, A., Bedick, C.R., Ferguson, D.H., Sidwell, T., Strakey, P.A.: Investigating instabilities in a rotating detonation combustor operating with natural gas–hydrogen fuel blend—effect of air preheat and annulus width. J. Eng. Gas Turbines Power 141(11) (2019)
2.
go back to reference Braun, J., Saracoglu, B.H., Paniagua, G.: Unsteady performance of rotating detonation engines with different exhaust nozzles. J. Propuls. Power 33(1), 121–130 (2017)CrossRef Braun, J., Saracoglu, B.H., Paniagua, G.: Unsteady performance of rotating detonation engines with different exhaust nozzles. J. Propuls. Power 33(1), 121–130 (2017)CrossRef
3.
go back to reference Anand, V., Gutmark, E.: Rotating detonation combustors and their similarities to rocket instabilities. Prog. Energy Combust. Sci. 73, 182–234 (2019)CrossRef Anand, V., Gutmark, E.: Rotating detonation combustors and their similarities to rocket instabilities. Prog. Energy Combust. Sci. 73, 182–234 (2019)CrossRef
4.
go back to reference John, Z.M., et al.: Recent progress, development trends, and consideration of continuous detonation engines. AIAA J. 1–59 (2020) John, Z.M., et al.: Recent progress, development trends, and consideration of continuous detonation engines. AIAA J. 1–59 (2020)
5.
go back to reference Schwer, D., Kailasanath, K.: Numerical investigation of the physics of rotating-detonation-engines. Proc. Combust. Inst. 33(2), 2195–2202 (2011)CrossRef Schwer, D., Kailasanath, K.: Numerical investigation of the physics of rotating-detonation-engines. Proc. Combust. Inst. 33(2), 2195–2202 (2011)CrossRef
6.
go back to reference Frolov, S.M., Dubrovskii, A.V., Ivanov, V.S.: Three-dimensional numerical simulation of the operation of a rotating-detonation chamber with separate supply of fuel and oxidizer. Russ. J. Phys. Chem. B 7(1), 35–43 (2013)CrossRef Frolov, S.M., Dubrovskii, A.V., Ivanov, V.S.: Three-dimensional numerical simulation of the operation of a rotating-detonation chamber with separate supply of fuel and oxidizer. Russ. J. Phys. Chem. B 7(1), 35–43 (2013)CrossRef
7.
go back to reference Cocks, P.A.T., Holley, A.T.: High Fidelity Simulations of a Non - Premixed Rotating Detonation Engine, pp. 1–18 (2016) Cocks, P.A.T., Holley, A.T.: High Fidelity Simulations of a Non - Premixed Rotating Detonation Engine, pp. 1–18 (2016)
8.
go back to reference Pal, P., Xu, C., Kumar, G., Drennan, S.A., Rankin, B.A., Som, S.: Large-eddy simulations and mode analysis of ethylene/air combustion in a non-premixed rotating detonation engine. In: AIAA Propulsion and Energy 2020 Forum, pp. 1–12 (2020) Pal, P., Xu, C., Kumar, G., Drennan, S.A., Rankin, B.A., Som, S.: Large-eddy simulations and mode analysis of ethylene/air combustion in a non-premixed rotating detonation engine. In: AIAA Propulsion and Energy 2020 Forum, pp. 1–12 (2020)
9.
go back to reference Sato, T., Chacon, F., White, L., Raman, V., Gamba, M.: Mixing and detonation structure in a rotating detonation engine with an axial air inlet. Proc. Combust. Inst. 000, 1–8 (2020) Sato, T., Chacon, F., White, L., Raman, V., Gamba, M.: Mixing and detonation structure in a rotating detonation engine with an axial air inlet. Proc. Combust. Inst. 000, 1–8 (2020)
10.
go back to reference Bach, E., Stathopoulos, P., Paschereit, C.O., Bohon, M.D.: Performance analysis of a rotating detonation combustor based on stagnation pressure measurements. Combust. Flame 217, 21–36 (2020)CrossRef Bach, E., Stathopoulos, P., Paschereit, C.O., Bohon, M.D.: Performance analysis of a rotating detonation combustor based on stagnation pressure measurements. Combust. Flame 217, 21–36 (2020)CrossRef
11.
go back to reference Asli, M., Stathopoulos, P., Paschereit, C.O.: Aerodynamic investigation of guide vane configurations downstream a rotating detonation combustor. J. Eng. Gas Turbines Power (2020) Asli, M., Stathopoulos, P., Paschereit, C.O.: Aerodynamic investigation of guide vane configurations downstream a rotating detonation combustor. J. Eng. Gas Turbines Power (2020)
12.
go back to reference Liu, Z., Braun, J., Paniagua, G.: Characterization of a supersonic turbine downstream of a rotating detonation combustor. J. Eng. Gas Turbines Power 141(3), 031501 (2018) Liu, Z., Braun, J., Paniagua, G.: Characterization of a supersonic turbine downstream of a rotating detonation combustor. J. Eng. Gas Turbines Power 141(3), 031501 (2018)
13.
go back to reference Braun, J., Paniagua, G., Falempin, F., Le Naour, B.: Design and experimental assessment of bladeless turbines for axial inlet supersonic flows. J. Eng. Gas Turbines Power 142(4) (2020) Braun, J., Paniagua, G., Falempin, F., Le Naour, B.: Design and experimental assessment of bladeless turbines for axial inlet supersonic flows. J. Eng. Gas Turbines Power 142(4) (2020)
14.
go back to reference Inhestern, L.B., Braun, J., Paniagua, G., Serrano Cruz, J.R.: Design, optimization, and analysis of supersonic radial turbines. J. Eng. Gas Turbines Power 142(3), 1–12 (2020) Inhestern, L.B., Braun, J., Paniagua, G., Serrano Cruz, J.R.: Design, optimization, and analysis of supersonic radial turbines. J. Eng. Gas Turbines Power 142(3), 1–12 (2020)
15.
go back to reference Liu, Z., Braun, J., Paniagua, G.: Integration of a transonic high-pressure turbine with a rotating detonation combustor and a diffuser. Int. J. Turbo Jet-Engines (2020) Liu, Z., Braun, J., Paniagua, G.: Integration of a transonic high-pressure turbine with a rotating detonation combustor and a diffuser. Int. J. Turbo Jet-Engines (2020)
16.
go back to reference Liu, Z., Braun, J., Paniagua, G.: Thermal power plant upgrade via a rotating detonation combustor and retrofitted turbine with optimized endwalls. Int. J. Mech. Sci. 188, 105918 (2020) Liu, Z., Braun, J., Paniagua, G.: Thermal power plant upgrade via a rotating detonation combustor and retrofitted turbine with optimized endwalls. Int. J. Mech. Sci. 188, 105918 (2020)
17.
go back to reference Chakravarthy, S., Peroomian, O., Goldberg, U., Palaniswamy, S.: The CFD++ computational fluid dynamics software suite. SAE Tech. Pap. Ser. 1 (2010) Chakravarthy, S., Peroomian, O., Goldberg, U., Palaniswamy, S.: The CFD++ computational fluid dynamics software suite. SAE Tech. Pap. Ser. 1 (2010)
18.
go back to reference Fernández-Galisteo, D., Sánchez, A.L., Liñán, A., Williams, F.A.: One-step reduced kinetics for lean hydrogen-air deflagration. Combust. Flame 156(5), 985–996 (2009)CrossRef Fernández-Galisteo, D., Sánchez, A.L., Liñán, A., Williams, F.A.: One-step reduced kinetics for lean hydrogen-air deflagration. Combust. Flame 156(5), 985–996 (2009)CrossRef
19.
go back to reference Saavedra, J., Paniagua, G., Lavagnoli, S.: On the transient response of the turbulent boundary layer inception in compressible flows. J. Fluid Mech. 850, 1117–1141 (2018)MathSciNetCrossRef Saavedra, J., Paniagua, G., Lavagnoli, S.: On the transient response of the turbulent boundary layer inception in compressible flows. J. Fluid Mech. 850, 1117–1141 (2018)MathSciNetCrossRef
20.
go back to reference Braun, J., Sousa, J., Paniagua, G.: Numerical assessment of the convective heat transfer in rotating detonation combustors using a reduced-order model. Appl. Sci. 8(6), 893 (2018)CrossRef Braun, J., Sousa, J., Paniagua, G.: Numerical assessment of the convective heat transfer in rotating detonation combustors using a reduced-order model. Appl. Sci. 8(6), 893 (2018)CrossRef
21.
go back to reference Athmanathan, V., et al.: “Femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry in the exhaust of a rotating detonation combustor. Combust. Flame 231, 111504 (2021) Athmanathan, V., et al.: “Femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry in the exhaust of a rotating detonation combustor. Combust. Flame 231, 111504 (2021)
22.
go back to reference Athmanathan, V., et al.: Turbine-integrated high-pressure optical RDE (THOR) for injection and detonation dynamics assessment. In: AIAA Propulsion and Energy 2019 Forum, pp. 1–15 (2019) Athmanathan, V., et al.: Turbine-integrated high-pressure optical RDE (THOR) for injection and detonation dynamics assessment. In: AIAA Propulsion and Energy 2019 Forum, pp. 1–15 (2019)
23.
go back to reference Braun, J., Saavedra Garcia, J., Paniagua, G.: Evaluation of the unsteadiness across nozzles downstream of rotating detonation combustors. In: 55th AIAA Aerospace Sciences Meeting, pp. 1–13 (2017) Braun, J., Saavedra Garcia, J., Paniagua, G.: Evaluation of the unsteadiness across nozzles downstream of rotating detonation combustors. In: 55th AIAA Aerospace Sciences Meeting, pp. 1–13 (2017)
24.
go back to reference Kaemming, T.A., Paxson, D.E.: Determining the pressure gain of pressure gain combustion. In: 2018 Joint Propulsion Conference, p. 4567 (2018) Kaemming, T.A., Paxson, D.E.: Determining the pressure gain of pressure gain combustion. In: 2018 Joint Propulsion Conference, p. 4567 (2018)
25.
go back to reference Schwer, D.A., Kaemming, T.A., Kailasanath, K.: Pressure feedback in the diffuser of a ram-RDE propulsive device. In: 55th AIAA Aerospace Sciences Meeting (2017) Schwer, D.A., Kaemming, T.A., Kailasanath, K.: Pressure feedback in the diffuser of a ram-RDE propulsive device. In: 55th AIAA Aerospace Sciences Meeting (2017)
26.
go back to reference Rankin, B.A., Hoke, J., Schauer, F.: Periodic exhaust flow through a converging-diverging nozzle downstream of a rotating detonation engine. In: 52nd Aerospace Sciences Meeting, pp. 1–12 (2014) Rankin, B.A., Hoke, J., Schauer, F.: Periodic exhaust flow through a converging-diverging nozzle downstream of a rotating detonation engine. In: 52nd Aerospace Sciences Meeting, pp. 1–12 (2014)
27.
go back to reference Braun, J., et al.: Characterization of an integrated nozzle and supersonic axial turbine with a rotating detonation combustor. In: AIAA Propulsion and Energy 2019 Forum, pp. 1–11 (2019) Braun, J., et al.: Characterization of an integrated nozzle and supersonic axial turbine with a rotating detonation combustor. In: AIAA Propulsion and Energy 2019 Forum, pp. 1–11 (2019)
28.
go back to reference Braun, J., Paniagua, G., Ferguson, D.: Aero-thermal characterization of accelerating and diffusing passages downstream of rotating detonation combustors. In: ASME Turbo Expo 2021, GT2021–59111 Braun, J., Paniagua, G., Ferguson, D.: Aero-thermal characterization of accelerating and diffusing passages downstream of rotating detonation combustors. In: ASME Turbo Expo 2021, GT2021–59111
Metadata
Title
Rotating Detonation Combustor Downstream Transition Passage Design Considerations
Authors
James Braun
Guillermo Paniagua
Donald Ferguson
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-90727-3_11

Premium Partners