Skip to main content
Top

2022 | OriginalPaper | Chapter

Linear Forcing of Compressible Isotropic Turbulence in Rectangular Domains with Adapted Locally Refined Grids

Authors : Mario Sroka, Julius Reiss

Published in: Active Flow and Combustion Control 2021

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study investigates the applicability of the linear forcing method at rectangular domains with an adapted grid via local refinement. The advantages of the linear forcing method, using in a physical space solver for combustion simulations, are discussed. We present test cases for the different modifications of the forcing term and the major drawbacks occurring when using non-cubic domains. The use of a filtered velocity field within the forcing term is investigated, first as a solution for the described problems with rectangular domains and second as an attractive method to control the integral length scale of the turbulent field. Finally, we present results for various DNS computations in preparation for future studies of turbulence-flame interactions, and a few statistical properties of the turbulence are discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bassenne, M., Urzay, J., Park, G.I., Moin, P.: Constant-energetics physical-space forcing methods for improved convergence to homogeneous-isotropic turbulence with application to particle-laden flows. Phys. Fluids 28(3), 035114 (2016)CrossRef Bassenne, M., Urzay, J., Park, G.I., Moin, P.: Constant-energetics physical-space forcing methods for improved convergence to homogeneous-isotropic turbulence with application to particle-laden flows. Phys. Fluids 28(3), 035114 (2016)CrossRef
2.
go back to reference Bengoechea, S., Gray, J., Reiss, J., Moeck, J., Paschereit, O., Sesterhenn, J.: Detonation initiation in pipes with a single obstacle for mixtures of hydrogen and oxygen-enriched air. Combust. Flame 198, 290–304 (2018)CrossRef Bengoechea, S., Gray, J., Reiss, J., Moeck, J., Paschereit, O., Sesterhenn, J.: Detonation initiation in pipes with a single obstacle for mixtures of hydrogen and oxygen-enriched air. Combust. Flame 198, 290–304 (2018)CrossRef
3.
go back to reference Bogey, C., Cacqueray, N., Bailly, C.: A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations. J. Comput. Phys. 228, 1447–1465 (2009)MathSciNetCrossRef Bogey, C., Cacqueray, N., Bailly, C.: A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations. J. Comput. Phys. 228, 1447–1465 (2009)MathSciNetCrossRef
4.
go back to reference Brouwer, J., Reiss, J., Sesterhenn, J.: Conservative Finite Differences as an Alternative to Finite Volume for Compressible Flows. In: Fuhrmann, J., Ohlberger, M., Rohde, C. (eds.) Finite Volumes for Complex Applications VII - Methods and Theoretical Aspects. SPMS, vol. 77, pp. 169–176. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05684-5_15CrossRefMATH Brouwer, J., Reiss, J., Sesterhenn, J.: Conservative Finite Differences as an Alternative to Finite Volume for Compressible Flows. In: Fuhrmann, J., Ohlberger, M., Rohde, C. (eds.) Finite Volumes for Complex Applications VII - Methods and Theoretical Aspects. SPMS, vol. 77, pp. 169–176. Springer, Cham (2014). https://​doi.​org/​10.​1007/​978-3-319-05684-5_​15CrossRefMATH
5.
go back to reference Campos, A., Morgan, B.: The effect of artificial bulk viscosity in simulations of forced compressible turbulence. J. Comput. Phys. 371, 111–121 (2018)MathSciNetCrossRef Campos, A., Morgan, B.: The effect of artificial bulk viscosity in simulations of forced compressible turbulence. J. Comput. Phys. 371, 111–121 (2018)MathSciNetCrossRef
6.
go back to reference Carroll, P., Blanquart, G.: A proposed modification to Lundgren’s physical space velocity forcing method for isotropic turbulence. Phys. Fluids 25, 5114 (2013) Carroll, P., Blanquart, G.: A proposed modification to Lundgren’s physical space velocity forcing method for isotropic turbulence. Phys. Fluids 25, 5114 (2013)
7.
go back to reference Erlebacher, G., Hussaini, M., Sarkar, S., Kreiss, H.: The analysis and simulation of compressible turbulence. Theoret. Computat. Fluid Dyn. 2, 2 (1990)MATH Erlebacher, G., Hussaini, M., Sarkar, S., Kreiss, H.: The analysis and simulation of compressible turbulence. Theoret. Computat. Fluid Dyn. 2, 2 (1990)MATH
8.
go back to reference Jagannathan, S., Donzis, D.A.: Reynolds and mach number scaling in solenoidally-forced compressible turbulence using high-resolution direct numerical simulations. J. Fluid Mech. 789, 669–707 (2016)MathSciNetCrossRef Jagannathan, S., Donzis, D.A.: Reynolds and mach number scaling in solenoidally-forced compressible turbulence using high-resolution direct numerical simulations. J. Fluid Mech. 789, 669–707 (2016)MathSciNetCrossRef
9.
go back to reference Ketterl, S., Klein, M.: A Novel Turbulent Inflow Data Generation Method and its Application to the Simulation of Primary Breakup. In: Salvetti, M.V., Armenio, V., Fröhlich, J., Geurts, B.J., Kuerten, H. (eds.) Direct and Large-Eddy Simulation XI. ES, vol. 25, pp. 229–235. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-04915-7_31 Ketterl, S., Klein, M.: A Novel Turbulent Inflow Data Generation Method and its Application to the Simulation of Primary Breakup. In: Salvetti, M.V., Armenio, V., Fröhlich, J., Geurts, B.J., Kuerten, H. (eds.) Direct and Large-Eddy Simulation XI. ES, vol. 25, pp. 229–235. Springer, Cham (2019). https://​doi.​org/​10.​1007/​978-3-030-04915-7_​31
10.
go back to reference Klein, M., Chakraborty, N., Ketterl, S.: A comparison of strategies for direct numerical simulation of turbulence chemistry interaction in generic planar turbulent premixed flames. Flow Turbul. Combust. 99, 12 (2017)CrossRef Klein, M., Chakraborty, N., Ketterl, S.: A comparison of strategies for direct numerical simulation of turbulence chemistry interaction in generic planar turbulent premixed flames. Flow Turbul. Combust. 99, 12 (2017)CrossRef
11.
go back to reference Lundgren, T.: Linearly forced isotropic turbulence. Center Turbul. Res. Ann. Res. Briefs 2003, 02 (2003) Lundgren, T.: Linearly forced isotropic turbulence. Center Turbul. Res. Ann. Res. Briefs 2003, 02 (2003)
12.
go back to reference Palmore, J.A., Desjardins, O.: Technique for forcing high reynolds number isotropic turbulence in physical space. Phys. Rev. Fluids 3, 034605 (2018)CrossRef Palmore, J.A., Desjardins, O.: Technique for forcing high reynolds number isotropic turbulence in physical space. Phys. Rev. Fluids 3, 034605 (2018)CrossRef
13.
go back to reference Petersen, M.R., Livescu, D.: Forcing for statistically stationary compressible isotropic turbulence. Phys. Fluids 22(11), 116101 (2010)CrossRef Petersen, M.R., Livescu, D.: Forcing for statistically stationary compressible isotropic turbulence. Phys. Fluids 22(11), 116101 (2010)CrossRef
14.
go back to reference Reiss, J., Sesterhenn, J.: A conservative, skew-symmetric finite difference scheme for the compressible Navier-Stokes equations. Comput. Fluids 101, 08 (2013)MathSciNetMATH Reiss, J., Sesterhenn, J.: A conservative, skew-symmetric finite difference scheme for the compressible Navier-Stokes equations. Comput. Fluids 101, 08 (2013)MathSciNetMATH
15.
go back to reference Rosales, C., Meneveau, C.: Linear forcing in numerical simulations of isotropic turbulence: physical space implementations and convergence properties. Phys. Fluids 17(9), 095106 (2005)MathSciNetCrossRef Rosales, C., Meneveau, C.: Linear forcing in numerical simulations of isotropic turbulence: physical space implementations and convergence properties. Phys. Fluids 17(9), 095106 (2005)MathSciNetCrossRef
16.
go back to reference Sarkar, S., Erlebacher, G., Hussaini, M.Y., Kreiss, H.O.: The analysis and modelling of dilatational terms in compressible turbulence. J. Fluid Mech. 227, 473–493 (1991)CrossRef Sarkar, S., Erlebacher, G., Hussaini, M.Y., Kreiss, H.O.: The analysis and modelling of dilatational terms in compressible turbulence. J. Fluid Mech. 227, 473–493 (1991)CrossRef
17.
go back to reference Sroka, M., Engels, T., Krah, P., Mutzel, S., Schneider, K., Reiss. J.: An open and parallel multiresolution framework using block-based adaptive grids. In: King, R. (ed.) Active Flow and Combustion Control 2018, pp. 305–319, Springer International Publishing, Cham (2019) Sroka, M., Engels, T., Krah, P., Mutzel, S., Schneider, K., Reiss. J.: An open and parallel multiresolution framework using block-based adaptive grids. In: King, R. (ed.) Active Flow and Combustion Control 2018, pp. 305–319, Springer International Publishing, Cham (2019)
18.
go back to reference Wang, J., Gotoh, T., Watanabe, T.: Shocklet statistics in compressible isotropic turbulence. Phys. Rev. Fluids 2, 023401 (2017)CrossRef Wang, J., Gotoh, T., Watanabe, T.: Shocklet statistics in compressible isotropic turbulence. Phys. Rev. Fluids 2, 023401 (2017)CrossRef
Metadata
Title
Linear Forcing of Compressible Isotropic Turbulence in Rectangular Domains with Adapted Locally Refined Grids
Authors
Mario Sroka
Julius Reiss
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-90727-3_12

Premium Partners