Skip to main content
Top
Published in: Fluid Dynamics 6/2020

01-11-2020

Rotational Oscillations of a Porous Spherical Shell in Viscous Fluid

Authors: O. A. Bazarkina, N. G. Taktarov

Published in: Fluid Dynamics | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract—

Viscous fluid flows induced by rotational oscillations of a submerged porous spherical shell are determined. The analytical solutions of the time-dependent Brinkman equation inside the porous shell and the Navier–Stokes equation outside the shell are obtained in the Stokes approximation. The moment of the friction forces exerted on the control surface around the porous body is determined. The solutions obtained are analyzed. Various particular cases including the case of uniform shell rotation are considered.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Happel, J. and Brenner, H., Low Reynolds Number Hydrodynamics. Englewood Cliffs, N. J.: Prentice-Hall, 1965.MATH Happel, J. and Brenner, H., Low Reynolds Number Hydrodynamics. Englewood Cliffs, N. J.: Prentice-Hall, 1965.MATH
2.
go back to reference Jones, I.P., Low Reynolds number flow past a porous spherical shell, Math. Proc. Camb. Phis. Soc., 1973, vol. 73, no. 1, pp. 231–238.CrossRefADS Jones, I.P., Low Reynolds number flow past a porous spherical shell, Math. Proc. Camb. Phis. Soc., 1973, vol. 73, no. 1, pp. 231–238.CrossRefADS
3.
go back to reference Rajvanshi, S.C. and Wasu, S., Slow extensional flow past a non-homogeneous porous spherical shell, Int.J. Applied Mechanics and Engineering, 2013, vol. 18, no 2, pp. 491–502.ADS Rajvanshi, S.C. and Wasu, S., Slow extensional flow past a non-homogeneous porous spherical shell, Int.J. Applied Mechanics and Engineering, 2013, vol. 18, no 2, pp. 491–502.ADS
4.
go back to reference Deo, S., Yadav, P.K., and Tiwari, A., Slow viscous flow through a membrane built up from porous cylindrical particles with an impermeable core, Appl. Math. Modelling, 2010, vol. 34, no. 5, pp. 1329–1343.MathSciNetCrossRef Deo, S., Yadav, P.K., and Tiwari, A., Slow viscous flow through a membrane built up from porous cylindrical particles with an impermeable core, Appl. Math. Modelling, 2010, vol. 34, no. 5, pp. 1329–1343.MathSciNetCrossRef
5.
go back to reference Ochoa-Tapia J.A. and Whitaker, S., Momentum transfer at the boundary between a porous medium and a homogeneous fluid. I. Theoretical development, Int. J. Heat and Mass Transfer, 1995, vol. 38, no. 14, pp. 2635–2646.CrossRef Ochoa-Tapia J.A. and Whitaker, S., Momentum transfer at the boundary between a porous medium and a homogeneous fluid. I. Theoretical development, Int. J. Heat and Mass Transfer, 1995, vol. 38, no. 14, pp. 2635–2646.CrossRef
6.
go back to reference Ochoa-Tapia J.A. and Whitaker S., Momentum transfer at the boundary between a porous medium and a homogeneous fluid. – II. Comparison with experiment, Int. J. Heat and Mass Transfer, 1995, vol. 38, no. 14, pp. 2647–2655.CrossRef Ochoa-Tapia J.A. and Whitaker S., Momentum transfer at the boundary between a porous medium and a homogeneous fluid. – II. Comparison with experiment, Int. J. Heat and Mass Transfer, 1995, vol. 38, no. 14, pp. 2647–2655.CrossRef
7.
go back to reference Tilton, N. and Cortelezzi, L., Linear stability analysis of pressure-driven flows in channels with porous walls, J. Fluid Mech., 2008, vol. 604, pp. 411–445.MathSciNetCrossRefADS Tilton, N. and Cortelezzi, L., Linear stability analysis of pressure-driven flows in channels with porous walls, J. Fluid Mech., 2008, vol. 604, pp. 411–445.MathSciNetCrossRefADS
8.
go back to reference Brinkman, H.C., A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Appl. Sci. Res., 1947, vol. A1, no. 1, pp. 27–34.MATH Brinkman, H.C., A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Appl. Sci. Res., 1947, vol. A1, no. 1, pp. 27–34.MATH
9.
go back to reference Auriault, J.–L., On the domain of validity of Brinkman’s equation, Transp. Porous Med., 2009, vol. 79, no. 2, pp. 215–223.MathSciNetCrossRef Auriault, J.–L., On the domain of validity of Brinkman’s equation, Transp. Porous Med., 2009, vol. 79, no. 2, pp. 215–223.MathSciNetCrossRef
10.
go back to reference Alazmi, B. and Vafai, K., Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer, Int. J. Heat and Mass Transfer, 2001, vol. 44, no. 9, pp. 1735–1749.CrossRef Alazmi, B. and Vafai, K., Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer, Int. J. Heat and Mass Transfer, 2001, vol. 44, no. 9, pp. 1735–1749.CrossRef
11.
go back to reference Goyeau, B., Lhuillier, D., Gobin, D., and Velarde M.G., Momentum transport at a fluid-porous interface, Int. J. of Heat and Mass Transfer, 2003, vol. 46, no. 21, pp. 4071–4081.CrossRef Goyeau, B., Lhuillier, D., Gobin, D., and Velarde M.G., Momentum transport at a fluid-porous interface, Int. J. of Heat and Mass Transfer, 2003, vol. 46, no. 21, pp. 4071–4081.CrossRef
12.
go back to reference Landau, L.D. and Lifshitz, E.M., Theoretical Physics, vol. 6. Fluid Mechanics. New York: Pergamon, 2013. Landau, L.D. and Lifshitz, E.M., Theoretical Physics, vol. 6. Fluid Mechanics. New York: Pergamon, 2013.
13.
go back to reference Taktarov, N.G., Viscous fluid flow induced by rotational–oscillatory motion of a porous sphere, Fluid Dynamics, 2016, vol. 51, no. 5, pp. 703–708.MathSciNetCrossRef Taktarov, N.G., Viscous fluid flow induced by rotational–oscillatory motion of a porous sphere, Fluid Dynamics, 2016, vol. 51, no. 5, pp. 703–708.MathSciNetCrossRef
14.
go back to reference Taktarov, N.G. and Runova, O.A., Forces and moments exerted on a porous spherical body in viscous fluid within the framework of the Brinkman model, Izv. Vuzov, Povolzhskii Region. Fiz.-Mat. Nauki, 2018, no. 2 (46), pp. 27–37. Taktarov, N.G. and Runova, O.A., Forces and moments exerted on a porous spherical body in viscous fluid within the framework of the Brinkman model, Izv. Vuzov, Povolzhskii Region. Fiz.-Mat. Nauki, 2018, no. 2 (46), pp. 27–37.
Metadata
Title
Rotational Oscillations of a Porous Spherical Shell in Viscous Fluid
Authors
O. A. Bazarkina
N. G. Taktarov
Publication date
01-11-2020
Publisher
Pleiades Publishing
Published in
Fluid Dynamics / Issue 6/2020
Print ISSN: 0015-4628
Electronic ISSN: 1573-8507
DOI
https://doi.org/10.1134/S001546282006004X

Other articles of this Issue 6/2020

Fluid Dynamics 6/2020 Go to the issue

Premium Partners