Skip to main content
Top

2016 | OriginalPaper | Chapter

14. Safety Aspects of Li-Ion Batteries

Authors : Christian Julien, Alain Mauger, Ashok Vijh, Karim Zaghib

Published in: Lithium Batteries

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The carbon-coated LiFePO4 Li-ion oxide cathode was studied for its electrochemical, thermal, and safety performance. This electrode exhibited a reversible capacity corresponding to more than 89 % of the theoretical capacity when cycled between 2.5 and 4.0 V. Cylindrical 18650 cells with carbon-coated LiFePO4 also showed good capacity retention at higher discharge rates up to 5C rate with 99.3 % coulombic efficiency, implying that the carbon coating improves the electronic conductivity. Hybrid pulse power characterization (HPPC) test performed on LiFePO4 18650 cell indicated the suitability of this carbon-coated LiFePO4 for high power HEV applications. The heat generation during charge and discharge at 0.5C rate, studied using an isothermal microcalorimeter (IMC), indicated cell temperature is maintained in near ambient conditions in the absence of external cooling. Thermal studies were also investigated by Differential Scanning Calorimeter (DSC) and Accelerating Rate Calorimeter (ARC), which showed that LiFePO4 is safer, upon thermal and electrochemical abuse, than the commonly used lithium metal oxide cathodes with layered and spinel structures. Safety tests, such as nail penetration and crush test, were performed on LiFePO4 and LiCoO2 cathode based cells, to investigate on the safety hazards of the cells upon severe physical abuse and damage.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Joachin H, Kaun TD, Zaghib K, Prakash J (2008) Electrochemical and thermal studies of LiFePO4 cathode in lithium-ion cells. ECS Trans 6–25:11–16CrossRef Joachin H, Kaun TD, Zaghib K, Prakash J (2008) Electrochemical and thermal studies of LiFePO4 cathode in lithium-ion cells. ECS Trans 6–25:11–16CrossRef
2.
go back to reference Yang H, Bang HJ, Amine K, Prakash J (2005) Investigations of the exothermic reactions of natural graphite anode for Li-ion batteries during thermal runaway. J Electrochem Soc 152:A73–A79CrossRef Yang H, Bang HJ, Amine K, Prakash J (2005) Investigations of the exothermic reactions of natural graphite anode for Li-ion batteries during thermal runaway. J Electrochem Soc 152:A73–A79CrossRef
3.
go back to reference Joachin H, Kaun TD, Zaghib K, Prakash J (2009) Electrochemical and thermal studies of carbon-coated LiFePO4 cathode. J Electrochem Soc 156:A401–A406CrossRef Joachin H, Kaun TD, Zaghib K, Prakash J (2009) Electrochemical and thermal studies of carbon-coated LiFePO4 cathode. J Electrochem Soc 156:A401–A406CrossRef
4.
go back to reference Lee CW, Venkatachalapathy R, Prakash J (2000) A novel flame-retardant additive for lithium batteries. Electrochem Solid State Lett 3:63–65CrossRefMATH Lee CW, Venkatachalapathy R, Prakash J (2000) A novel flame-retardant additive for lithium batteries. Electrochem Solid State Lett 3:63–65CrossRefMATH
5.
go back to reference MacNeil DD, Lu Z, Chen Z, Dahn JR (2002) A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion cathodes. J Power Sourc 108:8–14CrossRef MacNeil DD, Lu Z, Chen Z, Dahn JR (2002) A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion cathodes. J Power Sourc 108:8–14CrossRef
6.
go back to reference Li J, Suzuki T, Naga K, Ohzawa Y, Nakajima T (2007) Electrochemical performance of LiFePO4 modified by pressure-pulsed chemical vapor infiltration in lithium-ion batteries. Mater Sci Eng B 142:86–92CrossRef Li J, Suzuki T, Naga K, Ohzawa Y, Nakajima T (2007) Electrochemical performance of LiFePO4 modified by pressure-pulsed chemical vapor infiltration in lithium-ion batteries. Mater Sci Eng B 142:86–92CrossRef
7.
go back to reference Takahashi M, Otsuka H, Akuto K, Sakurai Y (2005) Confirmation of long-term cyclability and high thermal stability of LiFePO4 in prismatic lithium-ion cells. J Electrochem Soc 152:A899–A904CrossRef Takahashi M, Otsuka H, Akuto K, Sakurai Y (2005) Confirmation of long-term cyclability and high thermal stability of LiFePO4 in prismatic lithium-ion cells. J Electrochem Soc 152:A899–A904CrossRef
8.
go back to reference Yonemura M, Yamada A, Takei Y, Sonoyama N, Kanno R (2004) Comparative kinetic study of olivine LixMPO4 (M = Fe, Mn). J Electrochem Soc 151:A1352–A1356CrossRef Yonemura M, Yamada A, Takei Y, Sonoyama N, Kanno R (2004) Comparative kinetic study of olivine LixMPO4 (M = Fe, Mn). J Electrochem Soc 151:A1352–A1356CrossRef
9.
go back to reference Zaghib K, Shim J, Guerfi A, Charest P, Striebel KA (2005) Effect of carbon source as additive in LiFePO4 as positive electrode for Li-ion batteries. Electrochem Solid State Lett 8:A207–A210CrossRef Zaghib K, Shim J, Guerfi A, Charest P, Striebel KA (2005) Effect of carbon source as additive in LiFePO4 as positive electrode for Li-ion batteries. Electrochem Solid State Lett 8:A207–A210CrossRef
10.
go back to reference Belharouak I, Johnson C, Amine K (2005) Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4. Electrochem Commun 7:983–988CrossRef Belharouak I, Johnson C, Amine K (2005) Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4. Electrochem Commun 7:983–988CrossRef
11.
go back to reference Jiang J, Dahn JR (2004) ARC studies of the thermal stability of three different cathode materials LiCoO2, Li[Ni0.1Co0.8Mn0.1]O2 and LiFePO4 in LiPF6 and LiBoB EC/DEC electrolytes. Electrochem Commun 6:39–43CrossRef Jiang J, Dahn JR (2004) ARC studies of the thermal stability of three different cathode materials LiCoO2, Li[Ni0.1Co0.8Mn0.1]O2 and LiFePO4 in LiPF6 and LiBoB EC/DEC electrolytes. Electrochem Commun 6:39–43CrossRef
12.
go back to reference Padhi AK, Nanjundaswamy KS, Masquelier C, Goodenough JB (1997) Mapping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation. J Electrochem Soc 144:2581–2586CrossRef Padhi AK, Nanjundaswamy KS, Masquelier C, Goodenough JB (1997) Mapping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation. J Electrochem Soc 144:2581–2586CrossRef
13.
go back to reference Yamada A, Chung SC, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 148:A224–A229CrossRef Yamada A, Chung SC, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 148:A224–A229CrossRef
14.
go back to reference Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657CrossRef Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657CrossRef
15.
go back to reference Chen G, Richardson TJ (2010) Thermal instability of olivine-type LiMnPO4 cathodes. J Power Sourc 195:1221–1224CrossRef Chen G, Richardson TJ (2010) Thermal instability of olivine-type LiMnPO4 cathodes. J Power Sourc 195:1221–1224CrossRef
16.
go back to reference Chen G, Richardson TJ (2009) Solid solution phases in the olivine-type LiMnPO4/MnPO4 system. J Electrochem Soc 156:A756–A762CrossRef Chen G, Richardson TJ (2009) Solid solution phases in the olivine-type LiMnPO4/MnPO4 system. J Electrochem Soc 156:A756–A762CrossRef
17.
go back to reference Kim SW, Kim J, Gwon H, Kang K (2009) Phase stability study of Li1-xMnPO4 (0 ≤ x ≤ 1) cathode for Li rechargeable battery. J Electrochem Soc 156:A635–A638CrossRef Kim SW, Kim J, Gwon H, Kang K (2009) Phase stability study of Li1-xMnPO4 (0 ≤ x ≤ 1) cathode for Li rechargeable battery. J Electrochem Soc 156:A635–A638CrossRef
18.
go back to reference Bramnik NN, Nikolowski K, Trots DM, Ehrenberg H (2008) Thermal stability of LiCoPO4 cathodes. Electrochem Solid State Lett 11:A89–A93CrossRef Bramnik NN, Nikolowski K, Trots DM, Ehrenberg H (2008) Thermal stability of LiCoPO4 cathodes. Electrochem Solid State Lett 11:A89–A93CrossRef
19.
go back to reference Martha SK, Haik O, Zinigrad E, Exnar I, Drezen T, Miners JH, Aurbach D (2011) On the thermal stability of olivine cathode materials for lithium-ion batteries. J Electrochem Soc 158:A1115–A1122CrossRef Martha SK, Haik O, Zinigrad E, Exnar I, Drezen T, Miners JH, Aurbach D (2011) On the thermal stability of olivine cathode materials for lithium-ion batteries. J Electrochem Soc 158:A1115–A1122CrossRef
20.
go back to reference Martha SK, Markovsky B, Grinblat J, Gofer Y, Hai O, Zinigrad E, Aurbach D, Drezen T, Wang D, Deghenghi G, Exnar I (2009) LiMnPO4 as an advanced cathode material for rechargeable lithium batteries. J Electrochem Soc 156:A541–A552CrossRef Martha SK, Markovsky B, Grinblat J, Gofer Y, Hai O, Zinigrad E, Aurbach D, Drezen T, Wang D, Deghenghi G, Exnar I (2009) LiMnPO4 as an advanced cathode material for rechargeable lithium batteries. J Electrochem Soc 156:A541–A552CrossRef
21.
go back to reference Martha SK, Grinblat J, Haik O, Zinigrad E, Drezen T, Miners JH, Exnar I, Kay A, Markovsky B, Aurbach D (2009) LiMn0.8Fe0.2PO4: an advanced cathode material for rechargeable lithium batteries. Angew Chem Int Ed 48:8559–8563CrossRef Martha SK, Grinblat J, Haik O, Zinigrad E, Drezen T, Miners JH, Exnar I, Kay A, Markovsky B, Aurbach D (2009) LiMn0.8Fe0.2PO4: an advanced cathode material for rechargeable lithium batteries. Angew Chem Int Ed 48:8559–8563CrossRef
22.
go back to reference Zaghib K, Mauger A, Goodenough JB, Gendron F, Julien CM (2007) Electronic, optical, and magnetic properties of LiFePO4: small magnetic polaron effects. Chem Mater 19:3740–3747CrossRef Zaghib K, Mauger A, Goodenough JB, Gendron F, Julien CM (2007) Electronic, optical, and magnetic properties of LiFePO4: small magnetic polaron effects. Chem Mater 19:3740–3747CrossRef
23.
go back to reference Nakamura T, Miwa Y, Tabuchi M, Yamada Y (2006) Structural and surface modifications of LiFePO4 olivine particles and their electrochemical properties. J Electrochem Soc 153:A1108–A1114CrossRef Nakamura T, Miwa Y, Tabuchi M, Yamada Y (2006) Structural and surface modifications of LiFePO4 olivine particles and their electrochemical properties. J Electrochem Soc 153:A1108–A1114CrossRef
24.
go back to reference Yang S, Song Y, Zavalij PY, Whittingham MS (2002) Reactivity, stability and electrochemical behavior of lithium iron phosphates. Electrochem Commun 4:239–244 Yang S, Song Y, Zavalij PY, Whittingham MS (2002) Reactivity, stability and electrochemical behavior of lithium iron phosphates. Electrochem Commun 4:239–244
25.
go back to reference Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M (2001) Electroactivity of natural and synthetic triphylite. J Power Sourc 97:503–507CrossRef Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M (2001) Electroactivity of natural and synthetic triphylite. J Power Sourc 97:503–507CrossRef
26.
go back to reference Zaghib K, Mauger A, Kopec M, Gendron F, Julien CM (2009) Intrinsic properties of 40 nm-sized LiFePO4 particles. ECS Trans 16–42:31–41CrossRef Zaghib K, Mauger A, Kopec M, Gendron F, Julien CM (2009) Intrinsic properties of 40 nm-sized LiFePO4 particles. ECS Trans 16–42:31–41CrossRef
27.
go back to reference Wu Q, Lu W, Prakash J (2000) Characterization of a commercial size Li-ion cell with a reference electrode. J Power Sourc 88:237–242CrossRef Wu Q, Lu W, Prakash J (2000) Characterization of a commercial size Li-ion cell with a reference electrode. J Power Sourc 88:237–242CrossRef
28.
go back to reference Trudeau ML, Laul D, Veillette R, Serventi AM, Mauger A, Julien CM, Zaghib K (2011) In-situ HRTEM synthesis observation of nanostructured LiFePO4. J Power Sourc 196:7383–7394CrossRef Trudeau ML, Laul D, Veillette R, Serventi AM, Mauger A, Julien CM, Zaghib K (2011) In-situ HRTEM synthesis observation of nanostructured LiFePO4. J Power Sourc 196:7383–7394CrossRef
29.
go back to reference Zaghib K, Dontigny M, Guerfi A, Charest P, Rodrigues I, Mauger A, Julien CM (2011) Safe and fast-charging Li-ion battery with long shelf life for power applications. J Power Sourc 196:3949–3954CrossRef Zaghib K, Dontigny M, Guerfi A, Charest P, Rodrigues I, Mauger A, Julien CM (2011) Safe and fast-charging Li-ion battery with long shelf life for power applications. J Power Sourc 196:3949–3954CrossRef
30.
go back to reference Shin HC, Cho WI, Jang H (2006) Electrochemical properties of the carbon-coated LiFePO4 as a cathode material for lithium-ion secondary batteries. J Power Sourc 159:1383–1388CrossRef Shin HC, Cho WI, Jang H (2006) Electrochemical properties of the carbon-coated LiFePO4 as a cathode material for lithium-ion secondary batteries. J Power Sourc 159:1383–1388CrossRef
31.
go back to reference Gao F, Tang Z (2008) Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries. Electrochim Acta 53:5071–5075CrossRef Gao F, Tang Z (2008) Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries. Electrochim Acta 53:5071–5075CrossRef
32.
go back to reference Zaghib K, Dontigny M, Charest P, Labrecque JF, Guerfi A, Kopec M, Mauger A, Gendron F, Julien CM (2010) LiFePO4: from molten ingot to nanoparticles with high-rate performance in Li-ion batteries. J Power Sourc 195:8280–8288CrossRef Zaghib K, Dontigny M, Charest P, Labrecque JF, Guerfi A, Kopec M, Mauger A, Gendron F, Julien CM (2010) LiFePO4: from molten ingot to nanoparticles with high-rate performance in Li-ion batteries. J Power Sourc 195:8280–8288CrossRef
33.
go back to reference Julien CM, Mauger A, Zaghib K (2011) Surface effects on electrochemical properties of nano-sized LiFePO4. J Mater Chem 21:9955–9968CrossRef Julien CM, Mauger A, Zaghib K (2011) Surface effects on electrochemical properties of nano-sized LiFePO4. J Mater Chem 21:9955–9968CrossRef
34.
go back to reference Yang H, Prakash J (2004) Determination of the reversible and irreversible heats of a LiNi0.8Co0.15Al0.05O2/natural graphite cell using electrochemical-calorimetric technique. J Electrochem Soc 151:A1222–A1229CrossRef Yang H, Prakash J (2004) Determination of the reversible and irreversible heats of a LiNi0.8Co0.15Al0.05O2/natural graphite cell using electrochemical-calorimetric technique. J Electrochem Soc 151:A1222–A1229CrossRef
35.
go back to reference Lu W, Yang H, Prakash J (2006) Determination of the reversible and irreversible heats of LiNi0.8Co0.2O2/mesocarbon microbead Li-ion cell reactions using isothermal microcalorimetry. Electrochim Acta 51:1322–1329CrossRef Lu W, Yang H, Prakash J (2006) Determination of the reversible and irreversible heats of LiNi0.8Co0.2O2/mesocarbon microbead Li-ion cell reactions using isothermal microcalorimetry. Electrochim Acta 51:1322–1329CrossRef
36.
go back to reference Whitacre JF, Zaghib K, West WC, Ratnakumar BV (2008) Dual active material composite cathode structures for Li-ion batteries. J Power Sourc 177:528–536CrossRef Whitacre JF, Zaghib K, West WC, Ratnakumar BV (2008) Dual active material composite cathode structures for Li-ion batteries. J Power Sourc 177:528–536CrossRef
37.
go back to reference Forgez C, Do DV, Friedrich G, Morcrette M, Delacourt C (2010) Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery. J Power Sourc 195:2961–2968CrossRef Forgez C, Do DV, Friedrich G, Morcrette M, Delacourt C (2010) Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery. J Power Sourc 195:2961–2968CrossRef
38.
go back to reference Jin EM, Jin B, Jun DK, Park KH, Gu HB, Kim KW (2008) A study on the electrochemical characteristics of LiFePO4 cathode for lithium polymer batteries by hydrothermal method. J Power Sourc 178:801–806CrossRef Jin EM, Jin B, Jun DK, Park KH, Gu HB, Kim KW (2008) A study on the electrochemical characteristics of LiFePO4 cathode for lithium polymer batteries by hydrothermal method. J Power Sourc 178:801–806CrossRef
39.
go back to reference Bang HJ, Joachin H, Yang H, Amine K, Prakash J (2006) Contribution of the structural changes of LiNi0.8Co0.15Al0.05O2 cathodes on the exothermic reactions in Li-ion cells. J Electrochem Soc 153:A731–A737CrossRef Bang HJ, Joachin H, Yang H, Amine K, Prakash J (2006) Contribution of the structural changes of LiNi0.8Co0.15Al0.05O2 cathodes on the exothermic reactions in Li-ion cells. J Electrochem Soc 153:A731–A737CrossRef
40.
go back to reference Dokko K, Koizumi S, Sharaishi K, Kananura K (2007) Electrochemical properties of LiFePO4 prepared via hydrothermal route. J Power Sourc 165:656–659CrossRef Dokko K, Koizumi S, Sharaishi K, Kananura K (2007) Electrochemical properties of LiFePO4 prepared via hydrothermal route. J Power Sourc 165:656–659CrossRef
41.
go back to reference Dahn JR, Fuller EW, Obrovac M, von Sacken U (1994) Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells. Solid State Ionics 69:265–270CrossRef Dahn JR, Fuller EW, Obrovac M, von Sacken U (1994) Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells. Solid State Ionics 69:265–270CrossRef
42.
go back to reference McNeil DD, Dahn JR (2001) The reaction of charged cathodes with nonaqueous solvents and electrolytes: I. Li0.5CoO2. J Electrochem Soc 148:A1205–A1210CrossRef McNeil DD, Dahn JR (2001) The reaction of charged cathodes with nonaqueous solvents and electrolytes: I. Li0.5CoO2. J Electrochem Soc 148:A1205–A1210CrossRef
43.
go back to reference Lee KK, Yoon WS, Kim KB, Lee KY, Hong ST (2001) A study on the thermal behaviour of electrochemically delithiated Li1-xNiO2. J Electrochem Soc 148:A716–A722CrossRef Lee KK, Yoon WS, Kim KB, Lee KY, Hong ST (2001) A study on the thermal behaviour of electrochemically delithiated Li1-xNiO2. J Electrochem Soc 148:A716–A722CrossRef
44.
go back to reference Baba Y, Okada S, Yamaki JI (2002) Thermal stability of LixCoO2 cathode for lithium ion battery. Solid State Ionics 148:311–316CrossRef Baba Y, Okada S, Yamaki JI (2002) Thermal stability of LixCoO2 cathode for lithium ion battery. Solid State Ionics 148:311–316CrossRef
45.
go back to reference Guerfi A, Dontigny M, Charest P, Petitclerc M, Legacé M, Vijh A, Zaghib Z (2010) Improved electrolytes for Li-ion batteries: mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance. J Power Sourc 195:845–852CrossRef Guerfi A, Dontigny M, Charest P, Petitclerc M, Legacé M, Vijh A, Zaghib Z (2010) Improved electrolytes for Li-ion batteries: mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance. J Power Sourc 195:845–852CrossRef
46.
go back to reference Ishikawa M, Sugimoto Y, Kikuta M, Ishiko E, Kono M (2006) Pure ionic liquid electrolyte compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries. J Power Sourc 162:658–662CrossRef Ishikawa M, Sugimoto Y, Kikuta M, Ishiko E, Kono M (2006) Pure ionic liquid electrolyte compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries. J Power Sourc 162:658–662CrossRef
47.
go back to reference Matsumoto H, Sakaebe H, Tatsumi K, Kikuta M, Ishiko E, Kono M (2006) Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis(fluorosulfonyl)imide [FSI]-. J Power Sourc 160:1308–1313CrossRef Matsumoto H, Sakaebe H, Tatsumi K, Kikuta M, Ishiko E, Kono M (2006) Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis(fluorosulfonyl)imide [FSI]-. J Power Sourc 160:1308–1313CrossRef
48.
go back to reference Wang Y, Zaghib Z, Guerfi A, Bazito FFC, Torresi RM, Dahn JR (2007) Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials. Electrochim Acta 52:6346–6352CrossRef Wang Y, Zaghib Z, Guerfi A, Bazito FFC, Torresi RM, Dahn JR (2007) Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials. Electrochim Acta 52:6346–6352CrossRef
49.
go back to reference Zaghib K, Dubé J, Dallaire A, Galoustov K, Guerfi A, Ramanathan M, Benmayza A, Prakash J, Mauge A, Julien CM (2012) Enhanced thermal safety and high power performance of carbon-coated LiFePO4 olivine cathode for Li-ion batteries. J Power Sourc 219:36–44CrossRef Zaghib K, Dubé J, Dallaire A, Galoustov K, Guerfi A, Ramanathan M, Benmayza A, Prakash J, Mauge A, Julien CM (2012) Enhanced thermal safety and high power performance of carbon-coated LiFePO4 olivine cathode for Li-ion batteries. J Power Sourc 219:36–44CrossRef
50.
go back to reference Zaghib K, Dubé J, Dallaire A, Galoustov K, Guerfi A, Ramanathan M, Benmayza A, Prakash J, Mauger A, Julien CM (2014) Lithium ion cell components and their effect on high-power battery safety. In: Pistoia G (ed) Lithium-ion batteries: advances and applications. Elsevier, New York, pp 437–460CrossRef Zaghib K, Dubé J, Dallaire A, Galoustov K, Guerfi A, Ramanathan M, Benmayza A, Prakash J, Mauger A, Julien CM (2014) Lithium ion cell components and their effect on high-power battery safety. In: Pistoia G (ed) Lithium-ion batteries: advances and applications. Elsevier, New York, pp 437–460CrossRef
51.
go back to reference Li C, Zhang HP, Fu LJ, Liu H, Wu YP, Rahm E, Holze R, Wu HQ (2006) Cathode materials modified by surface coating for lithium ion batteries. Electrochim Acta 51:3872–3888CrossRef Li C, Zhang HP, Fu LJ, Liu H, Wu YP, Rahm E, Holze R, Wu HQ (2006) Cathode materials modified by surface coating for lithium ion batteries. Electrochim Acta 51:3872–3888CrossRef
52.
go back to reference Cho J, Kim YJ, Park B (2000) Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell. Chem Mater 12:3788–3791CrossRef Cho J, Kim YJ, Park B (2000) Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell. Chem Mater 12:3788–3791CrossRef
53.
go back to reference Liu LJ, Chen Q, Huang XJ, Yang XQ, Yoon WS, Lee HS, McBreen J (2004) electrochemical and in situ synchrotron XRD studies on Al2O3-coated LiCoO2 cathode material. J Electrochem Soc 151:A1344–A1351CrossRef Liu LJ, Chen Q, Huang XJ, Yang XQ, Yoon WS, Lee HS, McBreen J (2004) electrochemical and in situ synchrotron XRD studies on Al2O3-coated LiCoO2 cathode material. J Electrochem Soc 151:A1344–A1351CrossRef
54.
go back to reference Oh S, Lee JK, Byuna D, Cho W, Cho BW (2004) Effect of Al2O3 coating on electrochemical performance of LiCoO2 as cathode materials for secondary lithium batteries. J Power Sources 132:249–255CrossRef Oh S, Lee JK, Byuna D, Cho W, Cho BW (2004) Effect of Al2O3 coating on electrochemical performance of LiCoO2 as cathode materials for secondary lithium batteries. J Power Sources 132:249–255CrossRef
55.
go back to reference Chen ZH, Dahn JR (2002) Effect of a ZrO2 coating on the structure and electrochemistry of LixCoO2 when cycled to 4.5 V. Electrochem Solid State Lett 5:A213–A216CrossRef Chen ZH, Dahn JR (2002) Effect of a ZrO2 coating on the structure and electrochemistry of LixCoO2 when cycled to 4.5 V. Electrochem Solid State Lett 5:A213–A216CrossRef
56.
go back to reference Chang W, Choi JW, Im JC, Lee JK (2010) Effects of ZnO coating on electrochemical performance and thermal stability of LiCoO2 as cathode material for lithium-ion batteries. J Power Sourc 195:320–326CrossRef Chang W, Choi JW, Im JC, Lee JK (2010) Effects of ZnO coating on electrochemical performance and thermal stability of LiCoO2 as cathode material for lithium-ion batteries. J Power Sourc 195:320–326CrossRef
57.
go back to reference Wang Z, Wu C, Liu L, Wu F, Chen L, Huang X (2002) Electrochemical evaluation and structural characterization of commercial LiCoO2 surfaces modified with MgO for lithium-ion batteries. J Electrochem Soc 149:A466–A471CrossRef Wang Z, Wu C, Liu L, Wu F, Chen L, Huang X (2002) Electrochemical evaluation and structural characterization of commercial LiCoO2 surfaces modified with MgO for lithium-ion batteries. J Electrochem Soc 149:A466–A471CrossRef
58.
go back to reference Yoon WS, Nam KW, Jang D, Chung KY, Hanson J, Chen JM, Yang XQ (2012) Structural study of the coating effect on the thermal stability of charged MgO-coated LiNi0.8Co0.2O2 cathodes investigated by in situ XRD. J Power Sourc 217:128–134CrossRef Yoon WS, Nam KW, Jang D, Chung KY, Hanson J, Chen JM, Yang XQ (2012) Structural study of the coating effect on the thermal stability of charged MgO-coated LiNi0.8Co0.2O2 cathodes investigated by in situ XRD. J Power Sourc 217:128–134CrossRef
59.
go back to reference Cho J, Kim H, Park B (2004) Comparison of overcharge behavior of AlPO4-coated LiCoO2 and LiNi0.8Co0.1Mn0.1O2 cathode materials in Li-ion cells. J Electrochem Soc 151:A1707–A1711CrossRef Cho J, Kim H, Park B (2004) Comparison of overcharge behavior of AlPO4-coated LiCoO2 and LiNi0.8Co0.1Mn0.1O2 cathode materials in Li-ion cells. J Electrochem Soc 151:A1707–A1711CrossRef
60.
go back to reference Wohlfahrt-Mehrens M, Vogler C, Garche J (2004) Aging mechanisms of lithium cathode materials. J Power Sourc 127:58–64CrossRef Wohlfahrt-Mehrens M, Vogler C, Garche J (2004) Aging mechanisms of lithium cathode materials. J Power Sourc 127:58–64CrossRef
61.
go back to reference Amatucci GG, Schmutz CN, Blyr A, Sigala C, Gozdz AS, Larcher D, Tarascon JM (1997) Materials effects on the elevated and room temperature performance of C-LiMn2O4 Li-ion batteries. J Power Sourc 69:11–25CrossRef Amatucci GG, Schmutz CN, Blyr A, Sigala C, Gozdz AS, Larcher D, Tarascon JM (1997) Materials effects on the elevated and room temperature performance of C-LiMn2O4 Li-ion batteries. J Power Sourc 69:11–25CrossRef
62.
go back to reference Yi TF, Zhu YR, Zhu XD, Shu J, Yue CB, Zhou AN (2009) A review of recent developments in the surface modification of LiMn2O4 as cathode material of power lithium-ion battery. Ionics 15:779–784CrossRef Yi TF, Zhu YR, Zhu XD, Shu J, Yue CB, Zhou AN (2009) A review of recent developments in the surface modification of LiMn2O4 as cathode material of power lithium-ion battery. Ionics 15:779–784CrossRef
63.
go back to reference Sahan H, Göktepe H, Patat S, Ülgen A (2008) Solid State Ionics 178:1837–1842 Sahan H, Göktepe H, Patat S, Ülgen A (2008) Solid State Ionics 178:1837–1842
64.
go back to reference Lee KS, Myung ST, Amine K, Yashiro H, Sun YK (2009) Dual functioned BiOF-coated Li[Li0.1Al0.05Mn1.85]O4 for lithium batteries. J Mater Chem 19:1995–2005CrossRef Lee KS, Myung ST, Amine K, Yashiro H, Sun YK (2009) Dual functioned BiOF-coated Li[Li0.1Al0.05Mn1.85]O4 for lithium batteries. J Mater Chem 19:1995–2005CrossRef
65.
go back to reference Julien CM, Mauger A (2013) Review of 5-V electrodes for Li-ion batteries: status and trends. Ionics 19:951–988CrossRef Julien CM, Mauger A (2013) Review of 5-V electrodes for Li-ion batteries: status and trends. Ionics 19:951–988CrossRef
66.
go back to reference Liu D, Bai Y, Zhao S, Zhang W (2012) Improved cycling performance of 5 V spinel LiMn1.5Ni0.5O4 by amorphous FePO4 coating. J Power Sourc 219:333–338CrossRef Liu D, Bai Y, Zhao S, Zhang W (2012) Improved cycling performance of 5 V spinel LiMn1.5Ni0.5O4 by amorphous FePO4 coating. J Power Sourc 219:333–338CrossRef
Metadata
Title
Safety Aspects of Li-Ion Batteries
Authors
Christian Julien
Alain Mauger
Ashok Vijh
Karim Zaghib
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-19108-9_14