Skip to main content
Top
Published in:
Cover of the book

2015 | OriginalPaper | Chapter

3. SBO in Water Detoxification: Photo-Fenton Processes at Mild Conditions

Authors : J. Gomis, M. Mora, R. Vicente, R. Vercher, A. M. Amat, A. Arques

Published in: Soluble Bio-based Substances Isolated From Urban Wastes

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The implementation of a photo-Fenton process at mild acidic conditions is a potential environmental application for SBOs. The Fenton reagent (sacrificial amounts of hydrogen peroxide and catalytic iron salts) has been demonstrated as an efficient method for the removal of toxic xenobiotics that is enhanced upon irradiation; sunlight can be used for this purpose. In order to avoid precipitation of iron at pH above 3, several strategies have been tested. One of them involves formation of photoactive iron complexes. Humic substances have been employed for this purpose, due to their ability to complex iron. Because of its similar chemical properties, SBO are candidates for this purpose. Experiments carried out with different pollutants have shown that SBO are not good photocatalysts because of the strong screen effect associated to their color, while they are useful to drive a photo-Fenton at milder pH, as they are good complexing agents for iron. Döehlert matrixes have been employed to determine that the pH range for efficient photo-Fenton can be extended to values of ca. 5 and that optimal SBO concentration is approximately 20 mg/L. Finally, SBO have demonstrated to be non toxic, scarcely biodegradable and relatively resistant to oxidizing conditions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Oller, I., Malato, S., & Sánchez-Pérez, J. A. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Science of the Total Environment, 409(4141), 4146. Oller, I., Malato, S., & Sánchez-Pérez, J. A. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Science of the Total Environment, 409(4141), 4146.
2.
go back to reference Legrini, O., Oliveros, E., & Braun, A. M. (1994). Photochemical processes for water treatment. Chemical Reviews, 93(671), 698. Legrini, O., Oliveros, E., & Braun, A. M. (1994). Photochemical processes for water treatment. Chemical Reviews, 93(671), 698.
3.
go back to reference Malato, S., Blanco, J., Vidal, A., & Richter, C. (2002). Photocatalysis with solar energy at a pilot-plant scale: An overview. Applied Catalysis B: Environmental, 37, 1–15.CrossRef Malato, S., Blanco, J., Vidal, A., & Richter, C. (2002). Photocatalysis with solar energy at a pilot-plant scale: An overview. Applied Catalysis B: Environmental, 37, 1–15.CrossRef
4.
go back to reference Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J., & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 147, 1–59.CrossRef Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J., & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 147, 1–59.CrossRef
5.
go back to reference Gaya, U. I., & Abdullah, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9, 1–12.CrossRef Gaya, U. I., & Abdullah, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9, 1–12.CrossRef
6.
go back to reference Marín, M. L., Arques, A., Santos-Juanes, L., Amat, A. M., & Miranda, M. A. (2012). Organic photocatalysis for the oxidation of pollutants and model compounds. Chemical Reviews, 112, 1710–1750.CrossRef Marín, M. L., Arques, A., Santos-Juanes, L., Amat, A. M., & Miranda, M. A. (2012). Organic photocatalysis for the oxidation of pollutants and model compounds. Chemical Reviews, 112, 1710–1750.CrossRef
7.
go back to reference Pignatello, J. J., Oliveros, E., & Mackay, A. (2006). Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology, 36, 1–84.CrossRef Pignatello, J. J., Oliveros, E., & Mackay, A. (2006). Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology, 36, 1–84.CrossRef
8.
go back to reference Klamerth, N., Rizzo, L., Malato, S., Maldonado, M. I., Agüera, A., & Fernández-Alba, A. (2010). Degradation of fifteen emerging contaminants at 1 μg L−1 initial concentrations by mild solar photo-Fenton in MWTP effluents. Water Research, 44, 545–554.CrossRef Klamerth, N., Rizzo, L., Malato, S., Maldonado, M. I., Agüera, A., & Fernández-Alba, A. (2010). Degradation of fifteen emerging contaminants at 1 μg L−1 initial concentrations by mild solar photo-Fenton in MWTP effluents. Water Research, 44, 545–554.CrossRef
9.
go back to reference Bernabeu, A., Vercher, R. F., Santos-Juanes, L., Simón, P. J., Lardín, C., Martínez, M. A., et al. (2011). Solar photocatalysis as a tertiary treatment to remove emerging pollutants from wastewater treatment plant effluents. Catalysis Today, 161, 233–240.CrossRef Bernabeu, A., Vercher, R. F., Santos-Juanes, L., Simón, P. J., Lardín, C., Martínez, M. A., et al. (2011). Solar photocatalysis as a tertiary treatment to remove emerging pollutants from wastewater treatment plant effluents. Catalysis Today, 161, 233–240.CrossRef
10.
go back to reference Bernabeu, A., Palacios, S., Vicente, R., Vercher, R. F., Malato, S., Arques, A., & Amat, A. M. (2012). Solar photo-Fenton at mild conditions to treat a mixture of six emerging pollutants. Chemical Engineering Journal, 198–199, 65–72.CrossRef Bernabeu, A., Palacios, S., Vicente, R., Vercher, R. F., Malato, S., Arques, A., & Amat, A. M. (2012). Solar photo-Fenton at mild conditions to treat a mixture of six emerging pollutants. Chemical Engineering Journal, 198–199, 65–72.CrossRef
11.
go back to reference Nie, J., Hu, C., Qu, J., Zhou, L., & Hu, X. (2007). Photoassisted degradation of azo dyes over FexH2x-3/Fe0 in the presence of H2O2 at neutral values. Environmental Science and Technology, 41, 4715–4719.CrossRef Nie, J., Hu, C., Qu, J., Zhou, L., & Hu, X. (2007). Photoassisted degradation of azo dyes over FexH2x-3/Fe0 in the presence of H2O2 at neutral values. Environmental Science and Technology, 41, 4715–4719.CrossRef
12.
go back to reference Fukuchi, S., Nishimoto, R., Fukushima, M., & Zhu, Q. (2014). Effects of reducing agents on the degradation of 2,4,6-tribromophenol in a heterogeneous Fenton-like system with an iron-loaded natural zeolite. Applied Catalysis B: Environmental, 147, 411–419.CrossRef Fukuchi, S., Nishimoto, R., Fukushima, M., & Zhu, Q. (2014). Effects of reducing agents on the degradation of 2,4,6-tribromophenol in a heterogeneous Fenton-like system with an iron-loaded natural zeolite. Applied Catalysis B: Environmental, 147, 411–419.CrossRef
13.
go back to reference Mazille, F., Schoettl, T., Klamerth, N., Malato, S., & Pulgarin, C. (2010). Field solar degradation of pesticides and emerging water contaminants mediated by polymer films containing titanium and iron oxide with synergistic heterogeneous photocatalytic activity at neutral pH. Water Research, 44, 3029–3038.CrossRef Mazille, F., Schoettl, T., Klamerth, N., Malato, S., & Pulgarin, C. (2010). Field solar degradation of pesticides and emerging water contaminants mediated by polymer films containing titanium and iron oxide with synergistic heterogeneous photocatalytic activity at neutral pH. Water Research, 44, 3029–3038.CrossRef
14.
go back to reference Monteagudo, J. M., Durán, A. M., & López-Almodóvar, C. (2008). Homogeneous ferrioxa-late-assisted solar photo-Fenton degradation of Orange II aqueous solutions. Applied Catalysis B: Environmental, 83, 46–55.CrossRef Monteagudo, J. M., Durán, A. M., & López-Almodóvar, C. (2008). Homogeneous ferrioxa-late-assisted solar photo-Fenton degradation of Orange II aqueous solutions. Applied Catalysis B: Environmental, 83, 46–55.CrossRef
15.
go back to reference Hong, J., Lu, S., Zhang, C., Qi, S., & Wang, Y. (2011). Removal of Rhodamine B under visible irradiation in the presence of Fe0, H2O2, citrate and aeration at circumneutral pH. Chemosphere, 84, 1542–1547.CrossRef Hong, J., Lu, S., Zhang, C., Qi, S., & Wang, Y. (2011). Removal of Rhodamine B under visible irradiation in the presence of Fe0, H2O2, citrate and aeration at circumneutral pH. Chemosphere, 84, 1542–1547.CrossRef
16.
go back to reference Silva, M. R. A., Trovó, A. G., & Nogueira, R. F. P. (2007). Degradation of the herbicide tebuthiuron using solar photo-Fenton process and ferric citrate complex at circumneutral pH. Journal of Photochemistry and Photobiology A: Chemistry, 191, 187–192.CrossRef Silva, M. R. A., Trovó, A. G., & Nogueira, R. F. P. (2007). Degradation of the herbicide tebuthiuron using solar photo-Fenton process and ferric citrate complex at circumneutral pH. Journal of Photochemistry and Photobiology A: Chemistry, 191, 187–192.CrossRef
17.
go back to reference Huang, W., Brigante, M., Wu, F., Hanna, K., & Mailhot, G. (2013). Effect of ethylenediamine-N, N’-disuccinic acid on Fenton and photo Fenton processes using goethite as an iron source: Optimization of parameters for bisphenol A degradation. Environmental Science and Pollution Research, 20, 39–50.CrossRef Huang, W., Brigante, M., Wu, F., Hanna, K., & Mailhot, G. (2013). Effect of ethylenediamine-N, N’-disuccinic acid on Fenton and photo Fenton processes using goethite as an iron source: Optimization of parameters for bisphenol A degradation. Environmental Science and Pollution Research, 20, 39–50.CrossRef
18.
go back to reference Klamerth, N., Malato, S., Agüera, A., & Fernández-Alba, A. R. (2013). Photo-Fenton and modified photo-Fenton at neutral pH for the treatment of emerging contaminants in wastewater treatment plant effluents: A comparison. Water Research, 47, 833–840.CrossRef Klamerth, N., Malato, S., Agüera, A., & Fernández-Alba, A. R. (2013). Photo-Fenton and modified photo-Fenton at neutral pH for the treatment of emerging contaminants in wastewater treatment plant effluents: A comparison. Water Research, 47, 833–840.CrossRef
19.
go back to reference De Luca, A., Dantas, R. F., & Esplugas, S. (2014). Assessment of iron chelates efficiency for photo-Fenton at neutral pH. Water Research, 61, 232–242.CrossRef De Luca, A., Dantas, R. F., & Esplugas, S. (2014). Assessment of iron chelates efficiency for photo-Fenton at neutral pH. Water Research, 61, 232–242.CrossRef
20.
go back to reference Hug, S. J., & Leupin, O. (2003). Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environmental Science and Technology, 37, 2734–2742.CrossRef Hug, S. J., & Leupin, O. (2003). Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environmental Science and Technology, 37, 2734–2742.CrossRef
21.
go back to reference Chin, Y. P., Aiken, G., & O’Loughlin, E. (1994). Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environmental Science and Technology, 28, 1853–1858.CrossRef Chin, Y. P., Aiken, G., & O’Loughlin, E. (1994). Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environmental Science and Technology, 28, 1853–1858.CrossRef
22.
go back to reference Mikutta, C., & Kretzschmar, R. (2011). Spectroscopic evidence for ternary complex formation between arsenate and ferric iron complexes of humic substances. Environmental Science and Technology, 45, 9550–9557.CrossRef Mikutta, C., & Kretzschmar, R. (2011). Spectroscopic evidence for ternary complex formation between arsenate and ferric iron complexes of humic substances. Environmental Science and Technology, 45, 9550–9557.CrossRef
23.
go back to reference Lipczynska-Kochany, E., & Kochany, J. (2008). Effect of humic substances on the Fenton treatment of wastewater at acidic and neutral pH. Chemosphere, 73, 745–750.CrossRef Lipczynska-Kochany, E., & Kochany, J. (2008). Effect of humic substances on the Fenton treatment of wastewater at acidic and neutral pH. Chemosphere, 73, 745–750.CrossRef
24.
go back to reference Georgi, A., Schierz, A., Trommler, U., Horwitz, C. P., Collins, T. J., & Kopinke, F. D. (2007). Humic modified Fenton reagent for enhancement of the working pH range. Applied Catalysis B: Environmental, 72, 26–36.CrossRef Georgi, A., Schierz, A., Trommler, U., Horwitz, C. P., Collins, T. J., & Kopinke, F. D. (2007). Humic modified Fenton reagent for enhancement of the working pH range. Applied Catalysis B: Environmental, 72, 26–36.CrossRef
25.
go back to reference Fan, C., Tsui, L., & Liao, M. (2011). Parathion degradation and its intermediate formation by Fenton process in neutral environment. Chemosphere, 82, 229–236.CrossRef Fan, C., Tsui, L., & Liao, M. (2011). Parathion degradation and its intermediate formation by Fenton process in neutral environment. Chemosphere, 82, 229–236.CrossRef
26.
go back to reference Klamerth, N., Malato, S., Maldonado, M. I., Agüera, A., & Fernández-Alba, A. R. (2011). Modified photo-Fenton for degradation of emerging contaminants in municipal wastewater effluents. Catalysis Today, 161, 241–246.CrossRef Klamerth, N., Malato, S., Maldonado, M. I., Agüera, A., & Fernández-Alba, A. R. (2011). Modified photo-Fenton for degradation of emerging contaminants in municipal wastewater effluents. Catalysis Today, 161, 241–246.CrossRef
27.
go back to reference Khan, J. A., He, X., Khan, H. M., Shah, N. S., & Dionysiou, D. D. (2013). Oxidative degradation of atrazine in aqueous solution by UV/H2O2/Fe2+ and UV/HSO5−/Fe2+ processes: A comparative study. Chemical Engineering Journal, 218, 376–383.CrossRef Khan, J. A., He, X., Khan, H. M., Shah, N. S., & Dionysiou, D. D. (2013). Oxidative degradation of atrazine in aqueous solution by UV/H2O2/Fe2+ and UV/HSO5−/Fe2+ processes: A comparative study. Chemical Engineering Journal, 218, 376–383.CrossRef
28.
go back to reference Vermilyea, W., & Voelker, B. M. (2009). Photo-Fenton reaction at near neutral pH. Environmental Science and Technology, 43, 6927–6933.CrossRef Vermilyea, W., & Voelker, B. M. (2009). Photo-Fenton reaction at near neutral pH. Environmental Science and Technology, 43, 6927–6933.CrossRef
29.
go back to reference Gomis, J., Vercher, R. F., Amat, A. M., Mártire, D. O., González, M. C., Bianco Prevot, A., et al. (2013). Application of soluble bio-organic substances (SBO) as photocatalysts for wastewater treatment: Sensitizing effect and photo-Fenton-like process. Catalysis Today, 209, 176–180.CrossRef Gomis, J., Vercher, R. F., Amat, A. M., Mártire, D. O., González, M. C., Bianco Prevot, A., et al. (2013). Application of soluble bio-organic substances (SBO) as photocatalysts for wastewater treatment: Sensitizing effect and photo-Fenton-like process. Catalysis Today, 209, 176–180.CrossRef
30.
go back to reference Gomis, J., Bianco Prevot, A., Montoneri, E., González, M. C., Amat, A. M., Mártire, D. O., et al. (2014). Waste sourced bio-based substances for solar-driven wastewater remediation: Photodegradation of emerging pollutants. Chemical Engineering Journal, 235, 236–243.CrossRef Gomis, J., Bianco Prevot, A., Montoneri, E., González, M. C., Amat, A. M., Mártire, D. O., et al. (2014). Waste sourced bio-based substances for solar-driven wastewater remediation: Photodegradation of emerging pollutants. Chemical Engineering Journal, 235, 236–243.CrossRef
31.
go back to reference Ferreira, S. L. C., dos Santos, W. N. L., Quintella, C. M., Neto, B. B., & Bosque-Sendra, J. M. (2004). Doehler matrix: A chemometric tool for analytical chemistry. Review Talanta, 63, 1061–1067.CrossRef Ferreira, S. L. C., dos Santos, W. N. L., Quintella, C. M., Neto, B. B., & Bosque-Sendra, J. M. (2004). Doehler matrix: A chemometric tool for analytical chemistry. Review Talanta, 63, 1061–1067.CrossRef
32.
go back to reference Gomis, J., Carlos, L., Bianco-Prevot, A., Teixeira, A. C. S. C., Mora, M., Amat, A. M., et al. (2014). Bio-based substances from urban waste as auxiliaries for solarphoto-Fenton treatment under mild conditions: Optimization of operational variables. Catalysis Today. doi:10.1016/j.cattod.2014.03.034. Gomis, J., Carlos, L., Bianco-Prevot, A., Teixeira, A. C. S. C., Mora, M., Amat, A. M., et al. (2014). Bio-based substances from urban waste as auxiliaries for solarphoto-Fenton treatment under mild conditions: Optimization of operational variables. Catalysis Today. doi:10.​1016/​j.​cattod.​2014.​03.​034.
Metadata
Title
SBO in Water Detoxification: Photo-Fenton Processes at Mild Conditions
Authors
J. Gomis
M. Mora
R. Vicente
R. Vercher
A. M. Amat
A. Arques
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-14744-4_3