Skip to main content
Top

09-03-2024 | Original Paper

SEACDSC: secure and energy-aware clustering based on discrete sand cat swarm optimization for IoT-enabled WSN applications

Authors: Walid Osamy, Ahmed M. Khedr, Ahmed A. Elsawy, P. V. Pravija Raj, Ahmed Aziz

Published in: Wireless Networks

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Wireless sensor networks (WSNs) hold the promise of delivering new intelligent, cost-effective, and collaborative applications with the potential to have a great impact on our daily life. WSNs are often employed for detecting and tracking a wide range of entities involved in realistic scenarios where security is of vital importance. While selecting energy-efficient Cluster Heads (CHs) is the primary focus of the majority of clustering approaches currently in use in WSNs, researchers have not given adequate consideration to the security aspects of CHs when developing a CH selection strategy. Estimating the trust between the nodes not only makes the WSN secure, but also improves communication between nodes and makes the WSN more reliable. In this paper, we develop a secure and energy-aware clustering approach (SEACDSC) for WSNs by adapting sand cat swarm optimization algorithm (SCSO). SEACDSC incorporates a novel mechanism for determining secure and energy-efficient CHs among the WSN nodes. In particular, we propose a Discrete SCSO method, a variant of the traditional SCSO, to facilitate the secure and efficacious selection of CHs. The fitness function is designed by considering nodes’ remaining energy and trust values for choosing CH efficiently. Furthermore, the exponential weighted moving average (EWMA) is used for dynamically updating the predefined threshold values following the network state. As demonstrated by the simulation results, SEACDSC outperforms the existing BAT-Based, MG-LEACH, Enhanced-LEACH, Improved-Leach, and RCH-LEACH techniques in terms of network stability, number of alive nodes, energy efficiency, reliability, average trust value of CHs and network lifetime.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Osamy, W., El-sawy, Ahmed A., & Khedr, A. M. (2019). SATC: A simulated annealing based tree construction and scheduling algorithm for minimizing aggregation time in wireless sensor networks. Wireless PeSCSOnal Communications, 108(2), 921–938.CrossRef Osamy, W., El-sawy, Ahmed A., & Khedr, A. M. (2019). SATC: A simulated annealing based tree construction and scheduling algorithm for minimizing aggregation time in wireless sensor networks. Wireless PeSCSOnal Communications, 108(2), 921–938.CrossRef
3.
go back to reference Khedr, A. M. (2015). Effective data acquisition protocol for multi-hop heterogeneous wireless sensor networks using compressive sensing. Algorithms, 8(4), 910–928.CrossRef Khedr, A. M. (2015). Effective data acquisition protocol for multi-hop heterogeneous wireless sensor networks using compressive sensing. Algorithms, 8(4), 910–928.CrossRef
4.
go back to reference Aziz, A., Osamy, W., & Khedr, A. M. (2019). Effective algorithm for optimizing compressive sensing in IoT and periodic monitoring applications. Journal of Network and Computer Applications, 126(15), 12–28.CrossRef Aziz, A., Osamy, W., & Khedr, A. M. (2019). Effective algorithm for optimizing compressive sensing in IoT and periodic monitoring applications. Journal of Network and Computer Applications, 126(15), 12–28.CrossRef
5.
go back to reference Osamy, W., El-Sawy, A. A., & Khedr, A. M. (2020). Effective TDMA scheduling for data collection in tree-based wireless sensor networks. Peer-to-Peer Networking and Applications, 13, 796–815.CrossRef Osamy, W., El-Sawy, A. A., & Khedr, A. M. (2020). Effective TDMA scheduling for data collection in tree-based wireless sensor networks. Peer-to-Peer Networking and Applications, 13, 796–815.CrossRef
7.
go back to reference Onuekwusi, Nnaemeka, & Okpara, Chinedu. (2020). Wireless sensor networks (WSN): An overview. American Scientific Research Journal for Engineering, Technology, and Sciences, 64, 53–63. Onuekwusi, Nnaemeka, & Okpara, Chinedu. (2020). Wireless sensor networks (WSN): An overview. American Scientific Research Journal for Engineering, Technology, and Sciences, 64, 53–63.
8.
go back to reference Ndinechi, M. C., & Opara, F. K. (2007). Design issues and applications of wireless sensor networks. International Journal of Natural and Applied Sciences, 3(1), 1–10. Ndinechi, M. C., & Opara, F. K. (2007). Design issues and applications of wireless sensor networks. International Journal of Natural and Applied Sciences, 3(1), 1–10.
9.
go back to reference Khedr, A. M., & Ramadan, H. (2011). Effective sensor relocation technique in mobile sensor networks. International Journal of Computer Networks & Communications (IJCNC), 3(1), 204–217.CrossRef Khedr, A. M., & Ramadan, H. (2011). Effective sensor relocation technique in mobile sensor networks. International Journal of Computer Networks & Communications (IJCNC), 3(1), 204–217.CrossRef
10.
go back to reference Huanan Z., Suping X., & Jiannan W. (2021). Research on technology of wireless sensor network. In: Kountchev, R., Mahanti, A., Chong, S., Patnaik, S., & Favorskaya, M. (Eds.), Advances in wireless communications and applications. Smart Innovation, Systems and Technologies (vol 190). Springer, Singapore. https://doi.org/10.1007/978-981-15-5697-5-13. Huanan Z., Suping X., & Jiannan W. (2021). Research on technology of wireless sensor network. In: Kountchev, R., Mahanti, A., Chong, S., Patnaik, S., & Favorskaya, M. (Eds.), Advances in wireless communications and applications. Smart Innovation, Systems and Technologies (vol 190). Springer, Singapore. https://​doi.​org/​10.​1007/​978-981-15-5697-5-13.
11.
go back to reference Mohajer, A., Daliri, M. S., Mirzaei, A., Ziaeddini, A., Nabipour, M., & Bavaghar, M. (2022). Heterogeneous computational resource allocation for NOMA: Toward green mobile edge-computing systems. IEEE Transactions on Services Computing, 16(2), 1225–1238.CrossRef Mohajer, A., Daliri, M. S., Mirzaei, A., Ziaeddini, A., Nabipour, M., & Bavaghar, M. (2022). Heterogeneous computational resource allocation for NOMA: Toward green mobile edge-computing systems. IEEE Transactions on Services Computing, 16(2), 1225–1238.CrossRef
13.
go back to reference Dong, S., Zhan, J., Hu, W., Mohajer, A., Bavaghar, M., & Mirzaei, A. (2023). Energy-efficient hierarchical resource allocation in uplink-downlink decoupled NOMA HetNets. IEEE Transactions on Network and Service Management. Dong, S., Zhan, J., Hu, W., Mohajer, A., Bavaghar, M., & Mirzaei, A. (2023). Energy-efficient hierarchical resource allocation in uplink-downlink decoupled NOMA HetNets. IEEE Transactions on Network and Service Management.
14.
go back to reference Haupt, J., Bajwa, W. U., Rabbat, M., & Nowak, R. (2008). Compressed sensing for networked data: A different approach to decentralized compression. IEEE Signal Processing Magazine, 25(2), 92101.CrossRef Haupt, J., Bajwa, W. U., Rabbat, M., & Nowak, R. (2008). Compressed sensing for networked data: A different approach to decentralized compression. IEEE Signal Processing Magazine, 25(2), 92101.CrossRef
15.
go back to reference Ulusoy, A., Gurbuz, O., & Onat, A. (2011). Wireless model- based predictive networked control system over cooperative wireless network. IEEE Transactions on Industrial Informatics, 7(1), 4151.CrossRef Ulusoy, A., Gurbuz, O., & Onat, A. (2011). Wireless model- based predictive networked control system over cooperative wireless network. IEEE Transactions on Industrial Informatics, 7(1), 4151.CrossRef
16.
go back to reference Al-Kashoash, H. A., Kharrufa, H., Al-Nidawi, Y., & Kemp, A. H. (2018). Congestion control in wireless sensor and 6LoWPAN networks: Toward the Internet of Things. Wireless Networks, 1–30. Al-Kashoash, H. A., Kharrufa, H., Al-Nidawi, Y., & Kemp, A. H. (2018). Congestion control in wireless sensor and 6LoWPAN networks: Toward the Internet of Things. Wireless Networks, 1–30.
17.
go back to reference Rahmani, A. M., Gia, T. N., Negash, B., Anzanpour, A., Azimi, I., Jiang, M., & Liljeberg, P. (2018). Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: A fog computing approach. Future Generation Computer Systems, 78, 641–658.CrossRef Rahmani, A. M., Gia, T. N., Negash, B., Anzanpour, A., Azimi, I., Jiang, M., & Liljeberg, P. (2018). Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: A fog computing approach. Future Generation Computer Systems, 78, 641–658.CrossRef
18.
go back to reference Dhumane, A. V., & Prasad, R. S. (2019). Multi-objective fractional gravitational search algorithm for energy efficient routing in IoT. Wireless Networks, 25(1), 399–413.CrossRef Dhumane, A. V., & Prasad, R. S. (2019). Multi-objective fractional gravitational search algorithm for energy efficient routing in IoT. Wireless Networks, 25(1), 399–413.CrossRef
19.
go back to reference Palopoli, L., Passerone, R., & Rizano, T. (2011). Scalable offline optimization of industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 7(2), 328329.CrossRef Palopoli, L., Passerone, R., & Rizano, T. (2011). Scalable offline optimization of industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 7(2), 328329.CrossRef
20.
go back to reference Li, S., Xu, L., & Wang, X. (2013). Compressed sensing signal and data acquisition in wireless sensor networks and Internet of things. IEEE Transactions on Industrial Informatics, 9(4), 2177–2186.MathSciNetCrossRef Li, S., Xu, L., & Wang, X. (2013). Compressed sensing signal and data acquisition in wireless sensor networks and Internet of things. IEEE Transactions on Industrial Informatics, 9(4), 2177–2186.MathSciNetCrossRef
21.
go back to reference Kavitha, M., & Geetha, B. G. (2017). An efficient city energy management system with secure routing communication using WSN. Cluster Computing, 1–12. Kavitha, M., & Geetha, B. G. (2017). An efficient city energy management system with secure routing communication using WSN. Cluster Computing, 1–12.
23.
27.
go back to reference Fang, W., Zhang, W., Chen, W., Pan, T., Ni, Y., & Yang, Y. (2020). Trust-based attack and defense in wireless sensor networks: A survey. Wireless Communications and Mobile Computing, 2020. Fang, W., Zhang, W., Chen, W., Pan, T., Ni, Y., & Yang, Y. (2020). Trust-based attack and defense in wireless sensor networks: A survey. Wireless Communications and Mobile Computing, 2020.
28.
go back to reference Yan, Z., Zhang, P., & Vasilakos, A. V. (2014). A survey on trust management for Internet of Things. Journal of Network and Computer Applications, 42, 120–134.CrossRef Yan, Z., Zhang, P., & Vasilakos, A. V. (2014). A survey on trust management for Internet of Things. Journal of Network and Computer Applications, 42, 120–134.CrossRef
30.
go back to reference Aziz, A., Osamy, W., Khedr, A. M., & Salim, A. (2021). Chain-routing scheme with compressive sensing-based data acquisition for Internet of Things-based wireless sensor networks. IET Network, 10(2), 43–58.CrossRef Aziz, A., Osamy, W., Khedr, A. M., & Salim, A. (2021). Chain-routing scheme with compressive sensing-based data acquisition for Internet of Things-based wireless sensor networks. IET Network, 10(2), 43–58.CrossRef
31.
go back to reference Mohajer, A., Sorouri, F., Mirzaei, A., Ziaeddini, A., Rad, K. J., & Bavaghar, M. (2022). Energy-aware hierarchical resource management and backhaul traffic optimization in heterogeneous cellular networks. IEEE Systems Journal, 16(4), 5188–5199.CrossRefADS Mohajer, A., Sorouri, F., Mirzaei, A., Ziaeddini, A., Rad, K. J., & Bavaghar, M. (2022). Energy-aware hierarchical resource management and backhaul traffic optimization in heterogeneous cellular networks. IEEE Systems Journal, 16(4), 5188–5199.CrossRefADS
47.
go back to reference Sahoo, R. R., Singh, M., Sardar, A. R., Mohapatra, S., & Sarkar, S. K. (2013). TREE-CR: Trust based secure and energy efficient clustering in WSN. In 2013 IEEE International Conference ON Emerging Trends in Computing, communication and nanotechnology (ICECCN). https://doi.org/10.1109/ice-ccn.2013.6528557. Sahoo, R. R., Singh, M., Sardar, A. R., Mohapatra, S., & Sarkar, S. K. (2013). TREE-CR: Trust based secure and energy efficient clustering in WSN. In 2013 IEEE International Conference ON Emerging Trends in Computing, communication and nanotechnology (ICECCN). https://​doi.​org/​10.​1109/​ice-ccn.​2013.​6528557.
49.
go back to reference Escorcia-Gutierrez, J., Mansour, R. F., Leal, E., Villanueva, J., Jimenez-Cabas, J., Soto, C., & Soto-Díaz, R. (2023). Privacy preserving blockchain with energy aware clustering scheme for IoT healthcare systems. Mobile Networks and Applications, 1–12. Escorcia-Gutierrez, J., Mansour, R. F., Leal, E., Villanueva, J., Jimenez-Cabas, J., Soto, C., & Soto-Díaz, R. (2023). Privacy preserving blockchain with energy aware clustering scheme for IoT healthcare systems. Mobile Networks and Applications, 1–12.
50.
go back to reference Thantharate, P., & Thantharate, A. (2023). ZeroTrustBlock: Enhancing security, privacy, and interoperability of sensitive data through ZeroTrust permissioned blockchain. Big Data and Cognitive Computing, 7(4), 165.CrossRef Thantharate, P., & Thantharate, A. (2023). ZeroTrustBlock: Enhancing security, privacy, and interoperability of sensitive data through ZeroTrust permissioned blockchain. Big Data and Cognitive Computing, 7(4), 165.CrossRef
54.
go back to reference Priayoheswari, B., Kulothungan, K., & Kannan, A. (2016). Beta reputation and direct trust model for secure communication in wireless sensor networks. In Proceedings of the International Conference on Informatics and Analytics—ICIA-16. https://doi.org/10.1145/2980258.2980413. Priayoheswari, B., Kulothungan, K., & Kannan, A. (2016). Beta reputation and direct trust model for secure communication in wireless sensor networks. In Proceedings of the International Conference on Informatics and Analytics—ICIA-16. https://​doi.​org/​10.​1145/​2980258.​2980413.
56.
go back to reference Silmi, S., Doukha, Z., & Moussaoui, S. (2021). A self-localization range free protocol for wireless sensor networks. Peer-to-Peer Networking and Applications, 1–11. Silmi, S., Doukha, Z., & Moussaoui, S. (2021). A self-localization range free protocol for wireless sensor networks. Peer-to-Peer Networking and Applications, 1–11.
57.
go back to reference Sabale, K., & Mini, S. (2021). Localization in wireless sensor networks with mobile anchor node path planning mechanism. Information Sciences, 579, 648–666.MathSciNetCrossRef Sabale, K., & Mini, S. (2021). Localization in wireless sensor networks with mobile anchor node path planning mechanism. Information Sciences, 579, 648–666.MathSciNetCrossRef
58.
go back to reference Lalama, Z., Boulfekhar, S., & Semechedine, F. (2021). Localization optimization in WSNs using meta-heuristics optimization algorithms: A survey. Wireless PeSCSOnal Communications, 1–24. Lalama, Z., Boulfekhar, S., & Semechedine, F. (2021). Localization optimization in WSNs using meta-heuristics optimization algorithms: A survey. Wireless PeSCSOnal Communications, 1–24.
61.
go back to reference Perry, M. B. (2010). The weighted moving average technique. Wiley Encyclopedia of Operations Research and Management Science . Perry, M. B. (2010). The weighted moving average technique. Wiley Encyclopedia of Operations Research and Management Science .
Metadata
Title
SEACDSC: secure and energy-aware clustering based on discrete sand cat swarm optimization for IoT-enabled WSN applications
Authors
Walid Osamy
Ahmed M. Khedr
Ahmed A. Elsawy
P. V. Pravija Raj
Ahmed Aziz
Publication date
09-03-2024
Publisher
Springer US
Published in
Wireless Networks
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-024-03682-9